41 resultados para electron field emission
Resumo:
It was recently suggested that the magnetic field created by the current of a bare tether strongly reduces its own electron-collection capability when a magnetic separatrix disconnecting ambient magnetized plasma from tether extends beyond its electric sheath. It is here shown that current reduction by the self-field depends on the ratio meterizing bias and current profiles along the tether (Lt tether length, characteristic length gauging ohmic effects) and on a new dimensionless number Ks involving ambient and tether parameters. Current reduction is weaker the lower Ks and L*/ Lt, which depend critically on the type of cross section: Ks varies as R5/3, h2/3R, and h2/3 1/4 width for wires, round tethers conductive only in a thin layer, and thin tapes, respectively; L* varies as R2/3 for wires and as h2/3 for tapes and round tethers conductive in a layer (R radius, h thickness). Self-field effects are fully negligible for the last two types of cross sections whatever the mode of operation. In practical efficient tether systems having L*/Lt low, maximum current reduction in case of wires is again negligible for power generation; for deorbiting, reduction is <1% for a 10 km tether and 15% for a 20 km tether. In the reboost mode there are no effects for Ks below some threshold; moderate effects may occur in practical but heavy reboost-wire systems that need no dedicated solar power.
Resumo:
In order to clarify the effect of charged dislocations and surface donor states on the transport mechanisms in polar AlInN/AlN/GaN heterostructures, we have studied the current-voltage characteristics of Schottky junctions fabricated on AlInN/AlN/GaN heterostructures. The reverse-bias leakage current behaviour has been interpreted with a Poole-Frenkel emission of electrons from trap states near the metal-semiconductor junction to dislocation induced states. The variation of the Schottky barrier height as a function of the AlN layer thickness has been measured and discussed, considering the role of the surface states in the formation of the two dimensional electron gas at AlN/GaN interface.
Resumo:
The electron-retarding range of the current-voltage characteristic of a flat Langmuir probe perpendicular to a strong magnetic field in a fully ionized plasma is analysed allowing for anomalous (Bohm) cross-field transport and temperature changes in the collection process. With probe size and ion thermal gyroradius comparable, and smaller than the electron mean free path, there is an outer quasineutral region with ion viscosity determinant in allowing nonambipolar parallel and cross flow. A potential overshoot lying either at the base or inside the quasineutral region both makes ions follow Boltzmann's law at negative bias and extends the electron-retarding range to probe bias e(j)p ~ +2Too. Electron heating and cooling occur roughly at positive and negative bias, with a re-minimum around efa ~ - 2 7 ^ ; far from the probe heat conduction cools and heats electrons at and radially away from the probe axis, respectively. The potential overshoot with no thermal effects would reduce the electron current Ie, making the In Ie versus 4>p graph downwards-concave,but cooling further reduces Ie substantially, and may tilt the slope upwards past the temperature minimum. The domain of strict validity of our analysis is narrow in case of low ion mass (deuterium), breaking down with the ion Boltzmann law.
Resumo:
El objetivo principal del presente trabajo es estudiar y explotar estructuras que presentan un gas bidimensional de electrones (2DEG) basadas en compuestos nitruros con alto contenido de indio. Existen muchas preguntas abiertas, relacionadas con el nitruro de indio y sus aleaciones, algunas de las cuales se han abordado en este estudio. En particular, se han investigado temas relacionados con el análisis y la tecnología del material, tanto para el InN y heteroestructuras de InAl(Ga)N/GaN como para sus aplicaciones a dispositivos avanzados. Después de un análisis de la dependencia de las propiedades del InN con respecto a tratamientos de procesado de dispositivos (plasma y térmicos), el problema relacionado con la formación de un contacto rectificador es considerado. Concretamente, su dificultad es debida a la presencia de acumulación de electrones superficiales en la forma de un gas bidimensional de electrones, debido al pinning del nivel de Fermi. El uso de métodos electroquímicos, comparados con técnicas propias de la microelectrónica, ha ayudado para la realización de esta tarea. En particular, se ha conseguido lamodulación de la acumulación de electrones con éxito. En heteroestructuras como InAl(Ga)N/GaN, el gas bidimensional está presente en la intercara entre GaN y InAl(Ga)N, aunque no haya polarización externa (estructuras modo on). La tecnología relacionada con la fabricación de transistores de alta movilidad en modo off (E-mode) es investigada. Se utiliza un método de ataque húmedo mediante una solución de contenido alcalino, estudiando las modificaciones estructurales que sufre la barrera. En este sentido, la necesidad de un control preciso sobre el material atacado es fundamental para obtener una estructura recessed para aplicaciones a transistores, con densidad de defectos e inhomogeneidad mínimos. La dependencia de la velocidad de ataque de las propiedades de las muestras antes del tratamiento es observada y comentada. Se presentan también investigaciones relacionadas con las propiedades básicas del InN. Gracias al uso de una puerta a través de un electrolito, el desplazamiento de los picos obtenidos por espectroscopia Raman es correlacionado con una variación de la densidad de electrones superficiales. En lo que concierne la aplicación a dispositivos, debido al estado de la tecnología actual y a la calidad del material InN, todavía no apto para dispositivos, la tesis se enfoca a la aplicación de heteroestructuras de InAl(Ga)N/GaN. Gracias a las ventajas de una barrera muy fina, comparada con la tecnología de AlGaN/GaN, el uso de esta estructura es adecuado para aplicaciones que requieren una elevada sensibilidad, estando el canal 2DEG más cerca de la superficie. De hecho, la sensibilidad obtenida en sensores de pH es comparable al estado del arte en términos de variaciones de potencial superficial, y, debido al poco espesor de la barrera, la variación de la corriente con el pH puede ser medida sin necesidad de un electrodo de referencia externo. Además, estructuras fotoconductivas basadas en un gas bidimensional presentan alta ganancia debida al elevado campo eléctrico en la intercara, que induce una elevada fuerza de separación entre hueco y electrón generados por absorción de luz. El uso de metalizaciones de tipo Schottky (fotodiodos Schottky y metal-semiconductormetal) reduce la corriente de oscuridad, en comparación con los fotoconductores. Además, la barrera delgada aumenta la eficiencia de extracción de los portadores. En consecuencia, se obtiene ganancia en todos los dispositivos analizados basados en heteroestructuras de InAl(Ga)N/GaN. Aunque presentando fotoconductividad persistente (PPC), los dispositivos resultan más rápidos con respeto a los valores que se dan en la literatura acerca de PPC en sistemas fotoconductivos. ABSTRACT The main objective of the present work is to study and exploit the two-dimensionalelectron- gas (2DEG) structures based on In-related nitride compounds. Many open questions are analyzed. In particular, technology and material-related topics are the focus of interest regarding both InNmaterial and InAl(Ga)N/GaNheterostructures (HSs) as well as their application to advanced devices. After the analysis of the dependence of InN properties on processing treatments (plasma-based and thermal), the problemof electrical blocking behaviour is taken into consideration. In particular its difficulty is due to the presence of a surface electron accumulation (SEA) in the form of a 2DEG, due to Fermi level pinning. The use of electrochemical methods, compared to standard microelectronic techniques, helped in the successful realization of this task. In particular, reversible modulation of SEA is accomplished. In heterostructures such as InAl(Ga)N/GaN, the 2DEGis present at the interface between GaN and InAl(Ga)N even without an external bias (normally-on structures). The technology related to the fabrication of normally off (E-mode) high-electron-mobility transistors (HEMTs) is investigated in heterostructures. An alkali-based wet-etching method is analysed, standing out the structural modifications the barrier underwent. The need of a precise control of the etched material is crucial, in this sense, to obtain a recessed structure for HEMT application with the lowest defect density and inhomogeneity. The dependence of the etch rate on the as-grown properties is observed and commented. Fundamental investigation related to InNis presented, related to the physics of this degeneratematerial. With the help of electrolyte gating (EG), the shift in Raman peaks is correlated to a variation in surface eletron density. As far as the application to device is concerned, due to the actual state of the technology and material quality of InN, not suitable for working devices yet, the focus is directed to the applications of InAl(Ga)N/GaN HSs. Due to the advantages of a very thin barrier layer, compared to standard AlGaN/GaN technology, the use of this structure is suitable for high sensitivity applications being the 2DEG channel closer to the surface. In fact, pH sensitivity obtained is comparable to the state-of-the-art in terms of surface potential variations, and, due to the ultrathin barrier, the current variation with pH can be recorded with no need of the external reference electrode. Moreover, 2DEG photoconductive structures present a high photoconductive gain duemostly to the high electric field at the interface,and hence a high separation strength of photogenerated electron and hole. The use of Schottky metallizations (Schottky photodiode and metal-semiconductor-metal) reduce the dark current, compared to photoconduction, and the thin barrier helps to increase the extraction efficiency. Gain is obtained in all the device structures investigated. The devices, even if they present persistent photoconductivity (PPC), resulted faster than the standard PPC related decay values.
Resumo:
A kinetic approach is used to develop a theory of electrostatic probes in a fully ionized plasma in the presence of a magnetic field. A consistent asymptotic expansion is obtained assuming that the electron Larmor radius is small compared to the radius of the probe. The order of magnitude of neglected terms is given. It is found that the electric potential within the tube of force defined by the cross section of the probe decays non-mono tonic ally from the probe; this bump disappears at a certain probe voltage and the theory is valid up to this voltage. The transition region, which extends beyond plasma potential, is not exponential. The possible saturation of the electron current is discussed. Restricted numerical results are given; they seem to be useful for weaker magnetic fields down to the zero-field limit. Extensions of the theory a r e considered.
Resumo:
Nuevas aplicaciones tecnológicas y científicas mediante amarras electrodinámicas son analizadas para misiones planetarias. i) Primero, se considera un conjunto de amarras cilíndricas en paralelo (veleros electrosolares) para una misión interplanetaria. Los iones provenientes del viento solar son repelidos por el alto potencial de dichas amarras generando empuje sobre el velero. Para conocer el intercambio de momento que provocan los iones sobre las amarras se ha considerado un modelo de potencial estacionario. Se ha analizado la transferencia orbital de la Tierra a Júpiter siguiendo un método de optimización de trayectoria indirecto. ii) Una vez que el velero se encuentra cerca de Júpiter, se ha considerado el despliegue de una amarra para diferentes objetivos científicos. iia) Una amarra podría ser utilizada para diagnóstico de plasmas, al ser una fuente efectiva de ondas, y también como un generador de auroras artificiales. Una amarra conductora que orbite en la magnetosfera jovial es capaz de producir ondas. Se han analizado las diferentes ondas radiadas por un conductor por el que circula una corriente constante que sigue una órbita polar de alta excentricidad y bajo apoápside, como ocurre en la misión Juno de la NASA. iib) Además, se ha estudiado una misión tentativa que sigue una órbita ecuatorial (LJO) por debajo de los intensos cinturones de radiación. Ambas misiones requiren potencia eléctrica para los sistemas de comunicación e instrumentos científicos. Las amarras pueden generar potencia de manera más eficiente que otros sistemas que utlizan paneles solares o sistemas de potencia de radioisótopos (RPS). La impedancia de radiación es necesaria para determinar la corriente que circula por todo el circuito de la amarra. En un modelo de plasma frío, la radiación ocurre principalmente en los modos de Alfven y magnetosónica rápida, mostrando un elevado índice de refracción. Se ha estudiado la impedancia de radiación en amarras con recubrimiento aislante para los dos modos de radiación y cada una de las misiones. A diferencia del caso ionosférico terrestre, la baja densidad y el intenso campo magnético que aparecen en el entorno de Júpiter consiguen que la girofrecuencia de los electrones sea mucho mayor que la frecuencia del plasma; esto hace que el espectro de potencia para cada modo se modifique substancialmente, aumentando la velocidad de Alfven. Se ha estimado también la impedancia de radiación para amarras sin aislante conductor. En la misión LJO, un vehículo espacial bajando lentamente la altitud de su órbita permitiría estudiar la estructura del campo magnético y composición atmosférica para entender la formación, evolución, y estructura de Júpiter. Adicionalmente, si el contactor (cátodo) se apaga, se dice que la amarra flota eléctricamente, permitiendo emisión de haz de electrones que generan auroras. El continuo apagado y encendido produce pulsos de corriente dando lugar a emisiones de señales, que pueden ser utilizadas para diagnóstico del plasma jovial. En Órbita Baja Jovial, los iones que impactan contra una amarra polarizada negativamente producen electrones secundarios, que, viajando helicoidalmente sobre las líneas de campo magnético de Júpiter, son capaces de alcanzar su atmósfera más alta, y, de esta manera, generar auroras. Se han identificado cuáles son las regiones donde la amarra sería más eficiente para producir auroras. iic) Otra aplicación científica sugerida para la misión LJO es la detección de granos cargados que orbitan cerca de Júpiter. Los electrones de alta energía en este ambiente pueden ser modelados por una distribucción no Maxwelliana conocida como distribución kappa. En escenarios con plasmas complejos, donde los campos eléctricos en Júpiter pueden acelerar las cargas hasta velocidades que superen la velocidad térmica, este tipo de distribuciones son muy útiles. En este caso las colas de las distribuciones de electrones siguen una ley de potencias. Se han estudiado las fluctuaciones de granos cargados para funciones de distribución kappa. iii) La tesis concluye con el análisis para deorbitar satélites con amarras electrodinámicas que siguen una Órbita Baja Terrestre (LEO). Una amarra debe presentar una baja probabilidad de corte por pequeño debris y además debe ser suficientemente ligero para que el cociente entre la masa de la amarra y el satélite sea muy pequeño. En este trabajo se estiman las medidas de la longitud, anchura y espesor que debe tener una amarra para minimizar el producto de la probabilidad de corte por el cociente entre las masas de la amarra y el satélite. Se presentan resultados preliminares del diseño de una amarra con forma de cinta para deorbitar satélites relativamente ligeros como Cryosat y pesados como Envisat. Las misiones espaciales a planetas exteriores y en el ámbito terrestre plantean importantes retos científico-tecnológicos que deben ser abordados y solucionados. Por ello, desde el inicio de la era espacial se han diseñando novedosos métodos propulsivos, sistemas de guiado, navegación y control más robustos, y nuevos materiales para mejorar el rendimiento de los vehículos espaciales (SC). En un gran número de misiones interplanetarias y en todas las misiones a planetas exteriores se han empleado sistemas de radioisótopos (RPS) para generar potencia eléctrica en los vehículos espaciales y en los rovers de exploración. Estos sistemas emplean como fuente de energía el escaso y costoso plutonio-238. La NASA, por medio de un informe de la National Academy of Science (5 de Mayo del 2009), expresó una profunda preocupación por la baja cantidad de plutonio almacenado, insuficiente para desarrollar todas las misiones de exploración planetaria planeadas en el futuro [81, 91]. Esta circustancia ha llevado a dicha Agencia tomar la decisión de limitar el uso de estos sistemas RPS en algunas misiones de especial interés científico y una recomendación de alta prioridad para que el Congreso de los EEUU apruebe el reestablecimiento de la producción de plutonio-238, -son necesarios cerca de 5 kg de este material radiactivo al año-, para salvaguardar las misiones que requieran dichos sistemas de potencia a partir del año 2018. Por otro lado, la Agencia estadounidense ha estado considerando el uso de fuentes de energía alternativa; como la fisión nuclear a través del ambicioso proyecto Prometheus, para llevar a cabo una misión de exploración en el sistema jovial (JIMO). Finalmente, dicha misión fue desestimada por su elevado coste. Recientemente se han estado desarrollando sistemas que consigan energía a través de los recursos naturales que nos aporta el Sol, mediante paneles solares -poco eficientes para misiones a planetas alejados de la luz solar-. En este contexto, la misión JUNO del programa Nuevas Fronteras de la NASA, cuyo lanzamiento fue realizado con éxito en Agosto de 2011, va a ser la primera misión equipada con paneles solares que sobrevolará Júpiter en el 2015 siguiendo una órbita polar. Anteriormente se habían empleado los antes mencionados RPS para las misiones Pioneer 10,11, Voyager 1,2, Ulysses, Cassini-Huygens y Galileo (todas sobrevuelos excepto Galileo). Dicha misión seguirá una órbita elíptica de alta excentricidad con un periápside muy cercano a Júpiter, y apoápside lejano, evitando que los intensos cinturones de radiación puedan dañar los instrumentos de navegación y científicos. Un tether o amarra electrodinámica es capaz de operar como sistema propulsivo o generador de potencia, pero también puede ser considerado como solución científicotecnológica en misiones espaciales tanto en LEO (Órbita Baja Terrestre) como en planetas exteriores. Siguiendo una perspectiva histórica, durante las misiones terrestres TSS-1 (1992) y TSS-1R (1996) se emplearon amarras estandard con recubrimiento aislante en toda su longitud, aplicando como terminal anódico pasivo un colector esférico para captar electrones. En una geometría alternativa, propuesta por J. R. Sanmartín et al. (1993) [93], se consideró dejar la amarra sin recubrimiento aislante (“bare tether”), y sin colector anódico esférico, de forma que recogiera electrones a lo largo del segmento que resulta polarizado positivo, como si se tratara de una sonda de Langmuir de gran longitud. A diferencia de la amarra estandard, el “bare tether” es capaz de recoger electrones a lo largo de una superficie grande ya que este segmento es de varios kilómetros de longitud. Como el radio de la amarra es del orden de la longitud de Debye y pequeño comparado con el radio de Larmor de los electrones, permite una recolección eficiente de electrones en el régimen OML (Orbital Motion Limited) de sondas de Langmuir. La corriente dada por la teoría OML varía en función del perímetro y la longitud. En el caso de una cinta delgada, el perímetro depende de la anchura, que debe ser suficientemente grande para evitar cortes producidos por debris y micrometeoritos, y suficientemente pequeño para que la amarra funcione en dicho régimen [95]. En el experimento espacial TSS-1R mencionado anteriormente, se identificó una recolección de corriente más elevada que la que predecía el modelo teórico de Parker- Murphy, debido posiblemente a que se utilizaba un colector esférico de radio bastante mayor que la longitud de Debye [79]. En el caso de una amarra “bare”, que recoge electrones a lo largo de gran parte de su longitud, se puede producir un fenómeno conocido como atrapamiento adiabático de electrones (adiabatic electron trapping) [25, 40, 60, 73, 74, 97]. En el caso terrestre (LEO) se da la condición mesotérmica en la que la amarra se mueve con una velocidad muy superior a la velocidad térmica de los iones del ambiente y muy inferior a la velocidad térmica de los electrones. J. Laframboise y L. Parker [57] mostraron que, para una función de distribución quasi-isotrópica, la densidad de electrones debe entonces ser necesariamente inferior a la densidad ambiente. Por otra parte, debido a su flujo hipersónico y a la alta polarización positiva de la amarra, la densidad de los iones es mayor que la densidad ambiente en una vasta región de la parte “ram” del flujo, violando la condición de cuasi-neutralidad,-en una región de dimensión mayor que la longitud de Debye-. La solución a esta paradoja podría basarse en el atrapamiento adiabático de electrones ambiente en órbitas acotadas entorno al tether. ABSTRACT New technological and scientific applications by electrodynamic tethers for planetary missions are analyzed: i) A set of cylindrical, parallel tethers (electric solar sail or e-sail) is considered for an interplanetary mission; ions from the solar wind are repelled by the high potential of the tether, providing momentum to the e-sail. An approximated model of a stationary potential for a high solar wind flow is considered. With the force provided by a negative biased tether, an indirect method for the optimization trajectory of an Earth-to-Jupiter orbit transfer is analyzed. ii) The deployment of a tether from the e-sail allows several scientific applications in Jupiter. iia) It might be used as a source of radiative waves for plasma diagnostics and artificial aurora generator. A conductive tether orbiting in the Jovian magnetosphere produces waves. Wave radiation by a conductor carrying a steady current in both a polar, highly eccentric, low perijove orbit, as in NASA’s Juno mission, and an equatorial low Jovian orbit (LJO) mission below the intense radiation belts, is considered. Both missions will need electric power generation for scientific instruments and communication systems. Tethers generate power more efficiently than solar panels or radioisotope power systems (RPS). The radiation impedance is required to determine the current in the overall tether circuit. In a cold plasma model, radiation occurs mainly in the Alfven and fast magnetosonic modes, exhibiting a large refraction index. The radiation impedance of insulated tethers is determined for both modes and either mission. Unlike the Earth ionospheric case, the low-density, highly magnetized Jovian plasma makes the electron gyrofrequency much larger than the plasma frequency; this substantially modifies the power spectrum for either mode by increasing the Alfven velocity. An estimation of the radiation impedance of bare tethers is also considered. iib) In LJO, a spacecraft orbiting in a slow downward spiral under the radiation belts would allow determining magnetic field structure and atmospheric composition for understanding the formation, evolution, and structure of Jupiter. Additionally, if the cathodic contactor is switched off, a tether floats electrically, allowing e-beam emission that generate auroras. On/off switching produces bias/current pulses and signal emission, which might be used for Jovian plasma diagnostics. In LJO, the ions impacting against the negative-biased tether do produce secondary electrons, which racing down Jupiter’s magnetic field lines, reach the upper atmosphere. The energetic electrons there generate auroral effects. Regions where the tether efficiently should produce secondary electrons are analyzed. iic) Other scientific application suggested in LJO is the in-situ detection of charged grains. Charged grains naturally orbit near Jupiter. High-energy electrons in the Jovian ambient may be modeled by the kappa distribution function. In complex plasma scenarios, where the Jovian high electric field may accelerate charges up superthermal velocities, the use of non-Maxwellian distributions should be considered. In these cases, the distribution tails fit well to a power-law dependence for electrons. Fluctuations of the charged grains for non-Mawellian distribution function are here studied. iii) The present thesis is concluded with the analysis for de-orbiting satellites at end of mission by electrodynamic tethers. A de-orbit tether system must present very small tether-to-satellite mass ratio and small probability of a tether cut by small debris too. The present work shows how to select tape dimensions so as to minimize the product of those two magnitudes. Preliminary results of tape-tether design are here discussed to minimize that function. Results for de-orbiting Cryosat and Envisat are also presented.
Resumo:
An analysis of the electrostatic plasma instabilities excited by the application of a strong, uniform, alternating electric field is made on the basis of the Vlasov equation. A very general dispersion relation is obtained and discussed. Under the assumption W 2 O » C 2 pi. (where wO is the applied frequency and wpi the ion plasma frequency) a detailed analysis is given for wavelengths of the order of or large compared with the Debye length. It is found that there are two types of instabilities: resonant (or parametric) and nonresonant. The second is caused by the relative streaming of ions and electrons, generated by the field; it seems to exist only if wO is less than the electron plasma frequency wpe. The instability only appears if the field exceeds a certain threshold, which is found.
Resumo:
Juno, the second mission in the NASA New Frontiers Program, will both be a polar Jovian orbiter, and use solar arrays for power, moving away from previous use of radioisotope power systems (RPSs) in spite of the weak solar light reaching Jupiter. The power generation at Jupiter is critical, and a conductive tether could be an alternative source of power. A current-carrying tether orbiting in a magnetized ionosphere/plasmasphere will radiate waves. A magnitude of interest for both power generation and signal emission is the wave impedance. Jupiter has the strongest magnetic field in the Solar Planetary System and its plasma density is low everywhere. This leads to an electron plasma frequency smaller than the electron cyclotron frequency, and a high Alfven velocity. Unlike the low Earth orbit (LEO) case, the electron skin depth and the characteristic size of plasma contactors affect the Alfven impedance.
Resumo:
Wave radiation by a conductor carrying a steady current in both a polar, highly eccentric, low perijove orbit, as in NASA's planned Juno mission, and an equatorial low Jovian orbit (LJO) mission below the intense radiation belts, is considered. Both missions will need electric power generation for scientific instruments and communication systems. Tethers generate power more efficiently than solar panels or radioisotope power systems (RPS). The radiation impedance is required to determine the current in the overall tether circuit. In a cold plasma model, radiation occurs mainly in the Alfven and fast magnetosonic modes, exhibiting a large refraction index. The radiation impedance of insulated tethers is determined for both modes and either mission. Unlike the Earth ionospheric case, the low-density, highly magnetized Jovian plasma makes the electron gyrofrequency much larger than the plasma frequency; this substantially modifies the power spectrum for either mode by increasing the Alfven velocity. Finally, an estimation of the radiation impedance of bare tethers is considered. In LJO, a spacecraft orbiting in a slow downward spiral under the radiation belts would allow determining magnetic field structure and atmospheric composition for understanding the formation, evolution, and structure of Jupiter. Additionally, if the cathodic contactor is switched off, a tether floats electrically, allowing e-beam emission that generate auroras. On/off switching produces bias/current pulses and signal emission, which might be used for Jovian plasma diagnostics.
Resumo:
An electrically floating metallic bare tether in a low Earth orbit would be highly negative with respect to the ambient plasma over most of its length, and would be bombarded by ambient ions. This would liberate secondary electrons, which, after acceleration through the same voltage, would form a magnetically guided two-sided planar e-beam. Upon impact on the atmospheric E-layer, at about 120-140 Km altitude auroral effects (ionization and light emission) can be expected. This paper examines in a preliminary way the feasibility of using this effect as an upper atmospheric probe. It is concluded that significant perturbations can be produced along the illuminated planar sheet of the atmosphere, with ionization rates of several thousand cm-3 sec1. Observation of the induced optical emission is made difficult by the narrowness and high moving speed of the illuminated zone, but it is shown that vertical resolution of single spectral lines is possible, as is wider spectral coverage with no vertical resolution.
Resumo:
It has been recently suggested that the magnetic field created by the current in a bare tether could sensibly reduce its electron collection capability in the magnetised ionosphere, a region of closed magnetic surfaces disconnecting the cylinder from infinity. In this paper, the ohmic voltage drop along the tether is taken into account in considering self-field effects. Separate analyses are carried out for the thrust and power generation and drag modes of operation, which are affected in different ways. In the power generation and drag modes, bias decreases as current increases along the tether, starting at the anodic, positively-biased end (upper end in the usual, eastward-flying spacecraft); in the thrust mode of operation, bias increases as current increases along the tether, starting at the lower end. When the ohmic voltage drop is considered, self-field effects are shown to be weak, in all cases, for tape tethers, and for circular cross-section tethers just conductive in a thin outer layer. Self-field effects might become important, in the drag case only, for tethers with fully conductive cross sections that are unrealistically heavy.
Resumo:
The interaction of high intensity X-ray lasers with matter is modeled. A collisional-radiative timedependent module is implemented to study radiation transport in matter from ultrashort and ultraintense X-ray bursts. Inverse bremsstrahlung absorption by free electrons, electron conduction or hydrodynamic effects are not considered. The collisional-radiative system is coupled with the electron distribution evolution treated with a Fokker-Planck approach with additional inelastic terms. The model includes spontaneous emission, resonant photoabsorption, collisional excitation and de-excitation, radiative recombination, photoionization, collisional ionization, three-body recombination, autoionization and dielectronic capture. It is found that for high densities, but still below solid, collisions play an important role and thermalization times are not short enough to ensure a thermal electron distribution. At these densities Maxwellian and non-Maxwellian electron distribution models yield substantial differences in collisional rates, modifying the atomic population dynamics.
Resumo:
A numerical description is given for the pulsating emission of droplets from an electrified meniscus of an inviscid liquid of infinite electrical conductivity which is injected at a constant flow rate into a region of uniform, continuous or time periodic, electric field. Under a continuous field, the meniscus attains a periodic regime in which bursts of tiny droplets are emitted from its tip. At low electric fields this regime consists of sequences of emission bursts interspersed with sequences of meniscus oscillations without droplet emission, while at higher fields the bursts occur periodically. These results are in qualitative agreement with experimental results in the literature. Under a time periodic electric field with square waveform, the electric stress that acts on the surface of the liquid while the field is on may generate a tip that emits tiny droplets or may accelerate part of the meniscus and lead to a second emission mode in which a few large droplets are emitted after the electric field is turned off. Conditions under which each emission mode or a combination of the two are realized are discussed for low frequency oscillatory fields. A simplified model is proposed for high electric field frequencies, of the order of the capillary frequency of the meniscus. This model allows computing the average emission rate as a function of the amplitude, duration and bias of the electric field square wave, and shows that droplet emission fails to follow the applied field above a certain frequency
Resumo:
Nitrous oxide emissions from a network of agricultural experiments in Europe were used to explore the relative importance of site and management controls of emissions. At each site, a selection of management interventions were compared within replicated experimental designs in plot-based experiments. Arable experiments were conducted at Beano in Italy, El Encin in Spain, Foulum in Denmark, Logarden in Sweden, Maulde in Belgium CE1, Paulinenaue in Germany, and Tulloch in the UK. Grassland experiments were conducted at Crichton, Nafferton and Peaknaze in the UK, Godollo in Hungary, Rzecin in Poland, Zarnekow in Germany and Theix in France. Nitrous oxide emissions were measured at each site over a period of at least two years using static chambers. Emissions varied widely between sites and as a result of manipulation treatments. Average site emissions (throughout the study period) varied between 0.04 and 21.21 kg N2O-N ha−1yr−1, with the largest fluxes and variability associated with the grassland sites. Total nitrogen addition was found to be the single most important deter- minant of emissions, accounting for 15 % of the variance (using linear regression) in the data from the arable sites (p<0.0001), and 77 % in the grassland sites. The annual emissions from arable sites were significantly greater than those that would be predicted by IPCC default emission fac- tors. Variability of N2O emissions within sites that occurred as a result of manipulation treatments was greater than that resulting from site-to-site and year-to-year variation, highlighting the importance of management interventions in contributing to greenhouse gas mitigation
Resumo:
An analytical expression is derived for the electron thermionic current from heated metals by using a non equilibrium, modified Kappa energy distribution for electrons. This isotropic distribution characterizes the long high energy tails in the electron energy spectrum for low values of the index ? and also accounts for the Fermi energy for the metal electrons. The limit for large ? recovers the classical equilibrium Fermi-Dirac distribution. The predicted electron thermionic current for low ? increases between four and five orders of magnitude with respect to the predictions of the equilibrium Richardson-Dushmann current. The observed departures from this classical expression, also recovered for large ?, would correspond to moderate values of this index. The strong increments predicted by the thermionic emission currents suggest that, under appropriate conditions, materials with non equilibrium electron populations would become more efficient electron emitters at low temperatures.