23 resultados para elasticity modulus


Relevância:

20.00% 20.00%

Publicador:

Resumo:

El auge que ha surgido en los últimos años por la reparación de edificios y estructuras construidas con hormigón ha llevado al desarrollo de morteros de reparación cada vez más tecnológicos. En el desarrollo de estos morteros por parte de los fabricantes, surge la disyuntiva en el uso de los polímeros en sus formulaciones, por no encontrarse justificado en ocasiones el trinomio prestaciones/precio/aplicación. En esta tesis se ha realizado un estudio exhaustivo para la justificación de la utilización de estos morteros como morteros de reparación estructural como respuesta a la demanda actual disponiéndolo en tres partes: En la primera parte se realizó un estudio del arte de los morteros y sus constituyentes. El uso de los morteros se remonta a la antigüedad, utilizándose como componentes yeso y cal fundamentalmente. Los griegos y romanos desarrollaron el concepto de morteros de cal, introduciendo componentes como las puzolanas, cales hidraúlicas y áridos de polvo de mármol dando origen a morteros muy parecidos a los hormigones actuales. En la edad media y renacimiento se perdió la tecnología desarrollada por los romanos debido al extenso uso de la piedra en las construcciones civiles, defensivas y religiosas. Hubo que esperar hasta el siglo XIX para que J. Aspdin descubriese el actual cemento como el principal compuesto hidraúlico. Por último y ya en el siglo XX con la aparición de moléculas tales como estireno, melanina, cloruro de vinilo y poliésteres se comenzó a desarrollar la industria de los polímeros que se añadieron a los morteros dando lugar a los “composites”. El uso de polímeros en matrices cementantes dotan al mortero de propiedades tales como: adherencia, flexibilidad y trabajabilidad, como ya se tiene constancia desde los años 30 con el uso de caucho naturales. En la actualidad el uso de polímeros de síntesis (polivinialacetato, estireno-butadieno, viniacrílico y resinas epoxi) hacen que principalmente el mortero tenga mayor resistencia al ataque del agua y por lo tanto aumente su durabilidad ya que se minimizan todas las reacciones de deterioro (hielo, humedad, ataque biológico,…). En el presente estudio el polímero que se utilizó fue en estado polvo: polímero redispersable. Estos polímeros están encapsulados y cuando se ponen en contacto con el agua se liberan de la cápsula formando de nuevo el gel. En los morteros de reparación el único compuesto hidraúlico que hay es el cemento y es el principal constituyente hoy en día de los materiales de construcción. El cemento se obtiene por molienda conjunta de Clínker y yeso. El Clínker se obtiene por cocción de una mezcla de arcillas y calizas hasta una temperatura de 1450-1500º C por reacción en estado fundente. Para esta reacción se deben premachacar y homogeneizar las materias primas extraídas de la cantera. Son dosificadas en el horno con unas proporciones tales que cumplan con unas relación de óxidos tales que permitan formar las fases anhidras del Clínker C3S, C2S, C3A y C4AF. De la hidratación de las fases se obtiene el gel CSH que es el que proporciona al cemento de sus propiedades. Existe una norma (UNE-EN 197-1) que establece la composición, especificaciones y tipos de cementos que se fabrican en España. La tendencia actual en la fabricación del cemento pasa por el uso de cementos con mayores contenidos de adiciones (cal, puzolana, cenizas volantes, humo de sílice,…) con el objeto de obtener cementos más sostenibles. Otros componentes que influyen en las características de los morteros son: - Áridos. En el desarrollo de los morteros se suelen usar naturales, bien calizos o silícicos. Hacen la función de relleno y de cohesionantes de la matriz cementante. Deben ser inertes - Aditivos. Son aquellos componentes del mortero que son dosificados en una proporción menor al 5%. Los más usados son los superplastificantes por su acción de reductores de agua que revierte en una mayor durabilidad del mortero. Una vez analizada la composición de los morteros, la mejora tecnológica de los mismos está orientada al aumento de la durabilidad de su vida en obra. La durabilidad se define como la capacidad que éste tiene de resistir a la acción del ambiente, ataques químicos, físicos, biológicos o cualquier proceso que tienda a su destrucción. Estos procesos dependen de factores tales como la porosidad del hormigón y de la exposición al ambiente. En cuanto a la porosidad hay que tener en cuenta la distribución de macroporos, mesoporos y microporos de la estructura del hormigón, ya que no todos son susceptibles de que se produzca el transporte de agentes deteriorantes, provocando tensiones internas en las paredes de los mismos y destruyendo la matriz cementante Por otro lado los procesos de deterioro están relacionados con la acción del agua bien como agente directo o como vehículo de transporte del agente deteriorante. Un ambiente que resulta muy agresivo para los hormigones es el marino. En este caso los procesos de deterioro están relacionados con la presencia de cloruros y de sulfatos tanto en el agua de mar como en la atmosfera que en combinación con el CO2 y O2 forman la sal de Friedel. El deterioro de las estructuras en ambientes marinos se produce por la debilitación de la matriz cementante y posterior corrosión de las armaduras que provocan un aumento de volumen en el interior y rotura de la matriz cementante por tensiones capilares. Otras reacciones que pueden producir estos efectos son árido-álcali y difusión de iones cloruro. La durabilidad de un hormigón también depende del tipo de cemento y su composición química (cementos con altos contenidos de adición son más resistentes), relación agua/cemento y contenido de cemento. La Norma UNE-EN 1504 que consta de 10 partes, define los productos para la protección y reparación de estructuras de hormigón, el control de calidad de los productos, propiedades físico-químicas y durables que deben cumplir. En esta Norma se referencian otras 65 normas que ofrecen los métodos de ensayo para la evaluación de los sistemas de reparación. En la segunda parte de esta Tesis se hizo un diseño de experimentos con diferentes morteros poliméricos (con concentraciones de polímero entre 0 y 25%), tomando como referencia un mortero control sin polímero, y se estudiaron sus propiedades físico-químicas, mecánicas y durables. Para mortero con baja proporción de polímero se recurre a sistemas monocomponentes y para concentraciones altas bicomponentes en la que el polímero está en dispersión acuosa. Las propiedades mecánicas medidas fueron: resistencia a compresión, resistencia a flexión, módulo de elasticidad, adherencia por tracción directa y expansión-retracción, todas ellas bajo normas UNE. Como ensayos de caracterización de la durabilidad: absorción capilar, resistencia a carbonatación y adherencia a tracción después de ciclos hielo-deshielo. El objeto de este estudio es seleccionar el mortero con mejor resultado general para posteriormente hacer una comparativa entre un mortero con polímero (cantidad optimizada) y un mortero sin polímero. Para seleccionar esa cantidad óptima de polímero a usar se han tenido en cuenta los siguientes criterios: el mortero debe tener una clasificación R4 en cuanto a prestaciones mecánicas al igual que para evaluar sus propiedades durables frente a los ciclos realizados, siempre teniendo en cuenta que la adición de polímero no puede ser elevada para hacer el mortero competitivo. De este estudio se obtuvieron las siguientes conclusiones generales: - Un mortero normalizado no cumple con propiedades para ser clasificado como R3 o R4. - Sin necesidad de polímero se puede obtener un mortero que cumpliría con R4 para gran parte de las características medidas - Es necesario usar relaciones a:c< 0.5 para conseguir morteros R4, - La adición de polímero mejora siempre la adherencia, abrasión, absorción capilar y resistencia a carbonatación - Las diferentes proporciones de polímero usadas siempre suponen una mejora tecnológica en propiedades mecánicas y de durabilidad. - El polímero no influye sobre la expansión y retracción del mortero. - La adherencia se mejora notablemente con el uso del polímero. - La presencia de polímero en los morteros mejoran las propiedades relacionadas con la acción del agua, por aumento del poder cementante y por lo tanto de la cohesión. El poder cementante disminuye la porosidad. Como consecuencia final de este estudio se determinó que la cantidad óptima de polímero para la segunda parte del estudio es 2.0-3.5%. La tercera parte consistió en el estudio comparativo de dos morteros: uno sin polímero (mortero A) y otro con la cantidad optimizada de polímero, concluida en la parte anterior (mortero B). Una vez definido el porcentaje de polímeros que mejor se adapta a los resultados, se plantea un nuevo esqueleto granular mejorado, tomando una nueva dosificación de tamaños de áridos, tanto para el mortero de referencia, como para el mortero con polímeros, y se procede a realizar los ensayos para su caracterización física, microestructural y de durabilidad, realizándose, además de los ensayos de la parte 1, mediciones de las propiedades microestructurales que se estudiaron a través de las técnicas de porosimetría de mercurio y microscopia electrónica de barrido (SEM); así como propiedades del mortero en estado fresco (consistencia, contenido de aire ocluido y tiempo final de fraguado). El uso del polímero frente a la no incorporación en la formulación del mortero, proporcionó al mismo de las siguientes ventajas: - Respecto a sus propiedades en estado fresco: El mortero B presentó mayor consistencia y menor cantidad de aire ocluido lo cual hace un mortero más trabajable y más dúctil al igual que más resistente porque al endurecer dejará menos huecos en su estructura interna y aumentará su durabilidad. Al tener también mayor tiempo de fraguado, pero no excesivo permite que la manejabilidad para puesta en obra sea mayor, - Respecto a sus propiedades mecánicas: Destacar la mejora en la adherencia. Es una de las principales propiedades que confiere el polímero a los morteros. Esta mayor adherencia revierte en una mejora de la adherencia al soporte, minimización de las posibles reacciones en la interfase hormigón-mortero y por lo tanto un aumento en la durabilidad de la reparación ejecutada con el mortero y por consecuencia del hormigón. - Respecto a propiedades microestructurales: la porosidad del mortero con polímero es menor y menor tamaño de poro critico susceptible de ser atacado por agentes externos causantes de deterioro. De los datos obtenidos por SEM no se observaron grandes diferencias - En cuanto a abrasión y absorción capilar el mortero B presentó mejor comportamiento como consecuencia de su menor porosidad y su estructura microscópica. - Por último el comportamiento frente al ataque de sulfatos y agua de mar, así como al frente de carbonatación, fue más resistente en el mortero con polímero por su menor permeabilidad y su menor porosidad. Para completar el estudio de esta tesis, y debido a la gran importancia que están tomando en la actualidad factores como la sostenibilidad se ha realizado un análisis de ciclo de vida de los dos morteros objeto de estudio de la segunda parte experimental.In recent years, the extended use of repair materials for buildings and structures made the development of repair mortars more and more technical. In the development of these mortars by producers, the use of polymers in the formulations is a key point, because sometimes this use is not justified when looking to the performance/price/application as a whole. This thesis is an exhaustive study to justify the use of these mortars as a response to the current growing demand for structural repair. The thesis is classified in three parts:The first part is the study of the state of the art of mortars and their constituents.In ancient times, widely used mortars were based on lime and gypsum. The Greeks and Romans developed the concept of lime mortars, introducing components such as pozzolans, hydraulic limes and marble dust as aggregates, giving very similar concrete mortars to the ones used currently. In the middle Age and Renaissance, the technology developed by the Romans was lost, due to the extensive use of stone in the civil, religious and defensive constructions. It was not until the 19th century, when J. Aspdin discovered the current cement as the main hydraulic compound. Finally in the 20th century, with the appearance of molecules such as styrene, melanin, vinyl chloride and polyester, the industry began to develop polymers which were added to the binder to form special "composites".The use of polymers in cementitious matrixes give properties to the mortar such as adhesion, Currently, the result of the polymer synthesis (polivynilacetate, styrene-butadiene, vynilacrylic and epoxy resins) is that mortars have increased resistance to water attack and therefore, they increase their durability since all reactions of deterioration are minimised (ice, humidity, biological attack,...). In the present study the polymer used was redispersible polymer powder. These polymers are encapsulated and when in contact with water, they are released from the capsule forming a gel.In the repair mortars, the only hydraulic compound is the cement and nowadays, this is the main constituent of building materials. The current trend is centered in the use of higher contents of additions (lime, pozzolana, fly ash, silica, silica fume...) in order to obtain more sustainable cements. Once the composition of mortars is analyzed, the technological improvement is centred in increasing the durability of the working life. Durability is defined as the ability to resist the action of the environment, chemical, physical, and biological attacks or any process that tends to its destruction. These processes depend on factors such as the concrete porosity and the environmental exposure. In terms of porosity, it be considered, the distribution of Macropores and mesopores and pores of the concrete structure, since not all of them are capable of causing the transportation of damaging agents, causing internal stresses on the same walls and destroying the cementing matrix.In general, deterioration processes are related to the action of water, either as direct agent or as a transport vehicle. Concrete durability also depends on the type of cement and its chemical composition (cement with high addition amounts are more resistant), water/cement ratio and cement content. The standard UNE-EN 1504 consists of 10 parts and defines the products for the protection and repair of concrete, the quality control of products, physical-chemical properties and durability. Other 65 standards that provide the test methods for the evaluation of repair systems are referenced in this standard. In the second part of this thesis there is a design of experiments with different polymer mortars (with concentrations of polymer between 0 and 25%), taking a control mortar without polymer as a reference and its physico-chemical, mechanical and durable properties were studied. For mortars with low proportion of polymer, 1 component systems are used (powder polymer) and for high polymer concentrations, water dispersion polymers are used. The mechanical properties measured were: compressive strength, flexural strength, modulus of elasticity, adhesion by direct traction and expansion-shrinkage, all of them under standards UNE. As a characterization of the durability, following tests are carried out: capillary absorption, resistance to carbonation and pull out adhesion after freeze-thaw cycles. The target of this study is to select the best mortar to make a comparison between mortars with polymer (optimized amount) and mortars without polymer. To select the optimum amount of polymer the following criteria have been considered: the mortar must have a classification R4 in terms of mechanical performance as well as in durability properties against the performed cycles, always bearing in mind that the addition of polymer cannot be too high to make the mortar competitive in price. The following general conclusions were obtained from this study: - A standard mortar does not fulfill the properties to be classified as R3 or R4 - Without polymer, a mortar may fulfill R4 for most of the measured characteristics. - It is necessary to use relations w/c ratio < 0.5 to get R4 mortars - The addition of polymer always improves adhesion, abrasion, capillary absorption and carbonation resistance - The different proportions of polymer used always improve the mechanical properties and durability. - The polymer has no influence on the expansion and shrinkage of the mortar - Adhesion is improved significantly with the use of polymer. - The presence of polymer in mortars improves the properties related to the action of the water, by the increase of the cement power and therefore the cohesion. The cementitious properties decrease the porosity. As final result of this study, it was determined that the optimum amount of polymer for the second part of the study is 2.0 - 3.5%. The third part is the comparative study between two mortars: one without polymer (A mortar) and another with the optimized amount of polymer, completed in the previous part (mortar B). Once the percentage of polymer is defined, a new granular skeleton is defined, with a new dosing of aggregate sizes, for both the reference mortar, the mortar with polymers, and the tests for physical, microstructural characterization and durability, are performed, as well as trials of part 1, measurements of the microstructural properties that were studied by scanning electron microscopy (SEM) and mercury porosimetry techniques; as well as properties of the mortar in fresh State (consistency, content of entrained air and final setting time). The use of polymer versus non polymer mortar, provided the following advantages: - In fresh state: mortar with polymer presented higher consistency and least amount of entrained air, which makes a mortar more workable and more ductile as well as more resistant because hardening will leave fewer gaps in its internal structure and increase its durability. Also allow it allows a better workability because of the longer (not excessive) setting time. - Regarding the mechanical properties: improvement in adhesion. It is one of the main properties which give the polymer to mortars. This higher adhesion results in an improvement of adhesion to the substrate, minimization of possible reactions at the concrete-mortar interface and therefore an increase in the durability of the repair carried out with mortar and concrete. - Respect to microstructural properties: the porosity of mortar with polymer is less and with smaller pore size, critical to be attacked by external agents causing deterioration. No major differences were observed from the data obtained by SEM - In terms of abrasion and capillary absorption, polymer mortar presented better performance as a result of its lower porosity and its microscopic structure. - Finally behavior against attack by sulfates and seawater, as well as to carbonation, was better in the mortar with polymer because of its lower permeability and its lower porosity. To complete the study, due to the great importance of sustainability for future market facts, the life cycle of the two mortars studied was analysed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

El presente Trabajo Fin de Máster consistió en determinar la influencia que pueden poseer las nano-adiciones de Sílice y Alúmina y fibras de acero en un Hormigón de Alta Resistencia. Partiendo de una dosificación de Hormigón de Alta Resistencia conocida, que contenía humo de Sílice (10%) y fibras de poliolefina (3kg/m3), se les procedió a sustituir por la incorporación de nano-adiciones de Sílice y Alúmina (7% y 3% respectivamente) y añadiendo fibras de acero en lugar de poliolefina. En el presente trabajo se realizó una campaña experimental de laboratorio, en donde se realizaron tres (3) amasadas de Hormigón de Alta Resistencia con nueve (9) probetas cada una, donde el contenido de nano-adiciones no varió, mientras que el contenido de fibras fue de 20 y 40 kg/m3. Posterior a su realización, se procedió a someter las probetas a ensayos de resistencia a compresión, resistencia a tracción indirecta, resistencia a flexotracción, permeabilidad, módulo de elasticidad y coeficiente de Poisson con el fin de conocer el comportamiento de las amasadas una vez añadidas las nano-adiciones y fibras de acero. Luego de ejecutados los ensayos, se procedió a comparar los resultados entre amasadas y con las del hormigón de referencia. Los resultados muestran que la incorporación de las fibras de acero mejoran las propiedades del Hormigón de Alta Resistencia, sin negatividad. This Master’s Degree Thesis was to determine the influence that steel fibers and nano-additions of Silica and Alumina may possess in a High Strength Concrete mix. Based on a known dosage of High Strength Concrete, which contained Silica fume (10%) and polyolefin fibers (3 kg/m3), they were proceeded to be substituted for the incorporation of nano-additions of Silica and Alumina (7% and 3%, respectively) and by adding steel fibers rather than polyolefin fibers. This thesis carried out an experimental laboratory campaign, in which three (3) mixes of High Strength Concrete had nine (9) specimens each, where the content of nano-additions did not change, while the steel fiber content was 20 and 40 kg/m3. Subsequent to its completion, the specimens were subjected to different tests to determine the compressive strength, tensile strength, flexural strength, permeability, modulus of elasticity and Poisson's ratio in order to know the behavior of the mixes once the nano-additions and steel fibers were added. The results indicate that the steel fibers improve the properties of the High Strength Concrete rather to affect in a negative way

Relevância:

20.00% 20.00%

Publicador:

Resumo:

En los últimos años, debido a la creciente preocupación por el calentamiento global y el cambio climático, uno de los retos más importantes a los que se enfrenta nuestra sociedad es el uso eficiente y económico de energía así como la necesidad correspondiente de reducir los gases de efecto invernadero (GEI). Las tecnologías de mezclas semicalientes se han convertido en un nuevo e importante tema de investigación en el campo de los materiales para pavimentos ya que ofrece una solución potencial para la reducción del consumo energético y las emisiones de GEI durante la producción y puesta en obra de las mezclas bituminosas. Por otro lado, los pavimentos que contienen polvo de caucho procedente de neumático fuera de uso, al hacer uso productos de desecho, ahorran energía y recursos naturales. Estos pavimentos ofrecen una resistencia mejorada a la formación de roderas, a la fatiga y a la fisuración térmica, reducen los costes de mantenimiento y el ruido del tráfico así como prolongan la vida útil del pavimento. Sin embargo, estas mezclas presentan un importante inconveniente: la temperatura de fabricación se debe aumentar en comparación con las mezclas asfálticas convencionales, ya que la incorporación de caucho aumenta la viscosidad del ligante y, por lo tanto, se producen mayores cantidades de emisiones de GEI. En la presente Tesis, la tecnología de mezclas semicalientes con aditivos orgánicos (Sasobit, Asphaltan A, Asphaltan B, Licomont) se incorporó a la de betunes de alta viscosidad modificados con caucho (15% y 20% de caucho) con la finalidad de dar una solución a los inconvenientes de mezclas con caucho gracias a la utilización de aditivos reductores de la viscosidad. Para este fin, se estudió si sería posible obtener una producción más sostenible de mezclas con betunes de alto contenido en caucho sin afectar significativamente su nivel de rendimiento mecánico. La metodología aplicada para evaluar y comparar las características de las mezclas consistió en la realización de una serie de ensayos de laboratorio para betunes y mezclas con caucho y con aditivos de mezclas semicalientes y de un análisis del ciclo de vida híbrido de la producción de mezclas semicalientes teniendo en cuenta la papel del aditivo en la cadena de suministro con el fin de cuantificar con precisión los beneficios de esta tecnología. Los resultados del estudio indicaron que la incorporación de los aditivos permite reducir la viscosidad de los ligantes y, en consecuencia, las temperaturas de producción y de compactación de las mezclas. Por otro lado, aunque la adición de caucho mejoró significativamente el comportamiento mecánico de los ligantes a baja temperatura reduciendo la susceptibilidad al fenómeno de fisuración térmica, la adición de las ceras aumentó ligeramente la rigidez. Los resultados del estudio reológico mostraron que la adición de porcentajes crecientes de caucho mejoraban la resistencia del pavimento con respecto a la resistencia a la deformación permanente a altas temperaturas y a la fisuración térmica a bajas temperaturas. Además, se observó que los aditivos mejoran la resistencia a roderas y la elasticidad del pavimento al aumentar el módulo complejo a altas temperaturas y al disminuir del ángulo de fase. Por otra parte, el estudio reológico confirmó que los aditivos estudiados aumentan ligeramente la rigidez a bajas temperaturas. Los ensayos de fluencia llevados a cabo con el reómetro demostraron una vez más la mejora en la elasticidad y en la resistencia a la deformación permanente dada por la adición de las ceras. El estudio de mezclas con caucho y aditivos de mezclas semicalientes llevado a cabo demostró que las temperaturas de producción/compactación se pueden disminuir, que las mezclas no experimentarían escurrimiento, que los aditivos no cambian significativamente la resistencia conservada y que cumplen la sensibilidad al agua exigida. Además, los aditivos aumentaron el módulo de rigidez en algunos casos y mejoraron significativamente la resistencia a la deformación permanente. Asimismo, a excepción de uno de los aditivos, las mezclas con ceras tenían la misma o mayor resistencia a la fatiga en comparación con la mezcla control. Los resultados del análisis de ciclo de vida híbrido mostraron que la tecnología de mezclas semicalientes es capaz de ahorrar significativamente energía y reducir las emisiones de GEI, hasta un 18% y 20% respectivamente, en comparación con las mezclas de control. Sin embargo, en algunos de los casos estudiados, debido a la presencia de la cera, la temperatura de fabricación debe reducirse en un promedio de 8 ºC antes de que los beneficios de la reducción de emisiones y el consumo de combustible puedan ser obtenidos. Los principales sectores contribuyentes a los impactos ambientales generados en la fabricación de mezclas semicalientes fueron el sector de los combustibles, el de la minería y el de la construcción. Due to growing concerns over global warming and climate change in recent years, one of the most important challenges facing our society is the efficient and economic use of energy, and with it, the corresponding need to reduce greenhouse gas (GHG) emissions. The Warm Mix Asphalt (WMA) technology has become an important new research topic in the field of pavement materials as it offers a potential solution for the reduction of energy consumption and GHG emissions during the production and placement of asphalt mixtures. On the other hand, pavements containing crumb-rubber modified (CRM) binders save energy and natural resources by making use of waste products. These pavements offer an improved resistance to rutting, fatigue and thermal cracking; reduce traffic noise and maintenance costs and prolong pavement life. These mixtures, however, present one major drawback: the manufacturing temperature is higher compared to conventional asphalt mixtures as the rubber lends greater viscosity to the binder and, therefore, larger amounts of GHG emissions are produced. In this dissertation the WMA technology with organic additives (Sasobit, Asphaltan A, Asphaltan B and Licomont) was applied to CRM binders (15% and 20% of rubber) in order to offer a solution to the drawbacks of asphalt rubber (AR) mixtures thanks to the use of fluidifying additives. For this purpose, this study sought to determine if a more sustainable production of AR mixtures could be obtained without significantly affecting their level of mechanical performance. The methodology applied in order to evaluate and compare the performance of the mixtures consisted of carrying out several laboratory tests for the CRM binders and AR mixtures with WMA additives (AR-WMA mixtures) and a hybrid input-output-based life cycle assessment (hLCA) of the production of WMA. The results of the study indicated that the incorporation of the organic additives were able to reduce the viscosity of the binders and, consequently, the production and compaction temperatures. On the other hand, although the addition of rubber significantly improved the mechanical behaviour of the binders at low temperatures reducing the susceptibility to thermal cracking phenomena, the addition of the waxes slightly increased the stiffness. Master curves showed that the addition of increasing percentages of rubber improved the resistance of the pavement regarding both resistance to permanent deformation at high temperatures and thermal cracking at low temperatures. In addition, the waxes improved the rutting resistance and the elasticity as they increased the complex modulus at high temperatures and decreased the phase angle. Moreover, master curves also attest that the WMA additives studied increase the stiffness at low temperatures. The creep tests carried out proved once again the improvement in the elasticity and in the resistance to permanent deformation given by the addition of the waxes. The AR-WMA mixtures studied have shown that the production/compaction temperatures can be decreased, that the mixtures would not experience binder drainage, that the additives did not significantly change the retained resistance and fulfilled the water sensitivity required. Furthermore, the additives increased the stiffness modulus in some cases and significantly improved the permanent deformation resistance. Except for one of the additives, the waxes had the same or higher fatigue resistance compared to the control mixture. The results of the hLCA demonstrated that the WMA technology is able to significantly save energy and reduce GHG emissions, up to 18% and 20%, respectively, compared to the control mixtures. However, in some of the case studies, due to the presence of wax, the manufacturing temperature at the asphalt plant must be reduced by an average of 8ºC before the benefits of reduced emissions and fuel usage can be obtained. The results regarding the overall impacts generated using a detailed production layer decomposition indicated that fuel, mining and construction sectors are the main contributors to the environmental impacts of manufacturing WMA mixtures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In accordance with Russian, Kazakh and European building regulations, the deformation modulus of soil should be determined in the laboratory and also apply in situ soil tests on the stages of engineering geology prospecting. In this paper we present data on the determination and adjustment of the deformation characteristics at different stages of construction

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Una estructura vibra con la suma de sus infinitos modos de vibración, definidos por sus parámetros modales (frecuencias naturales, formas modales y coeficientes de amortiguamiento). Estos parámetros se pueden identificar a través del Análisis Modal Operacional (OMA). Así, un equipo de investigación de la Universidad Politécnica de Madrid ha identificado las propiedades modales de un edificio de hormigón armado en Madrid con el método Identificación de los sub-espacios estocásticos (SSI). Para completar el estudio dinámico de este edificio, se ha desarrollado un modelo de elementos finitos (FE) de este edificio de 19 plantas. Este modelo se ha calibrado a partir de su comportamiento dinámico obtenido experimentalmente a través del OMA. Los objetivos de esta tesis son; (i) identificar la estructura con varios métodos de SSI y el uso de diferentes ventanas de tiempo de tal manera que se cuantifican incertidumbres de los parámetros modales debidos al proceso de estimación, (ii) desarrollar FEM de este edificio y calibrar este modelo a partir de su comportamiento dinámico, y (iii) valorar la bondad del modelo. Los parámetros modales utilizados en esta calibración han sido; espesor de las losas, densidades de los materiales, módulos de elasticidad, dimensiones de las columnas y las condiciones de contorno de la cimentación. Se ha visto que el modelo actualizado representa el comportamiento dinámico de la estructura con una buena precisión. Por lo tanto, este modelo puede utilizarse dentro de un sistema de monitorización estructural (SHM) y para la detección de daños. En el futuro, podrá estudiar la influencia de los agentes medioambientales, tales como la temperatura o el viento, en los parámetros modales. A structure vibrates according to the sum of its vibration modes, defined by their modal parameters (natural frequencies, damping ratios and modal shapes). These parameters can be identified through Operational Modal Analysis (OMA). Thus, a research team of the Technical University of Madrid has identified the modal properties of a reinforced-concrete-frame building in Madrid using the Stochastic Subspace Identification (SSI) method and a time domain technique for the OMA. To complete the dynamic study of this building, a finite element model (FE) of this 19-floor building has been developed throughout this thesis. This model has been updated from its dynamic behavior identified by the OMA. The objectives of this thesis are to; (i) identify the structure with several SSI methods and using different time blocks in such a way that uncertainties due to the modal parameter estimation are quantified, (ii) develop a FEM of this building and tune this model from its dynamic behavior, and (iii) Assess the quality of the model, the modal parameters used in this updating process have been; thickness of slabs, material densities, modulus of elasticity, column dimensions and foundation boundary conditions. It has been shown that the final updated model represents the structure with a very good accuracy. Thus, this model might be used within a structural health monitoring framework (SHM). The study of the influence of changing environmental factors (such as temperature or wind) on the model parameters might be considered as a future work.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Desde mediados de la década de los 80 se está investigando sobre el hormigón autocompactante. Cada día, su uso en el mundo de la construcción es más común debido a sus numerosas ventajas como su excelente fluidez ya que puede fluir bajo su propio peso y llenar encofrados con formas complicadas y muy armados sin necesidad de compactaciones internas o externas. Por otra parte, la búsqueda de materiales más resistentes y duraderos, ha dado lugar a la incorporación de adiciones en materiales a base de cemento. En las últimas dos décadas, los ensayos con los nanomateriales, ha experimentado un gran aumento. Los resultados hasta ahora obtenidos pueden asumir no sólo un aumento en la resistencia de estos materiales, pero un cambio es su funcionalidad. Estas nanopartículas, concretamente la nanosílice, no sólo mejoran sus propiedades mecánicas y especialmente sus propiedades durables, sino que pueden implicar un cambio sustancial en las condiciones de uso y en su ciclo de vida. Este trabajo tiene como principal objetivo el estudio de las propiedades mecánicas, características microestructurales y durables de un hormigón autocompactante cuando se le agrega como adición nanosílice, microsílice y mezcla binarias de ambas, como adición al cemento. Para ello se han realizado 10 mezclas de hormigón. Se utilizó como referencia un hormigón autocompactante obtenido con cemento, caliza, árido, aditivo modificador de viscosidad Se han fabricado tres hormigones con la misma dosificación pero con diferentes contenidos de nanosílice. 2,5%, 5% y 7,5% Tres dosificaciones con adición de microsílice 2,5%, 5% y 7,5% y las tres restantes con mezclas binarias de nanosílice y microsílice con respectivamente2,5%-2,5%, 5%-2,5% y 2,5%-5%, sobre el peso del cemento. El contenido de superplastificante se modificó para conseguir las características de autocompactabilidad. Para observar los efectos de las adiciones añadidas al hormigón, se realiza una extensa campaña experimental. En ella se evaluaron en primer lugar, las características de autocompactabilidad del material en estado fresco, mediante los ensayos prescritos en la Instrucción Española del hormigón estructural EHE 08. Las propiedades mecánicas fueron evaluadas con ensayos de resistencia a compresión, resistencia a tracción indirecta y módulo de elasticidad. Las características microestructurales fueron analizadas mediante porosimetría por intrusión de mercurio, el análisis termogravimétrico y la microscopía electrónica de barrido. Para el estudio de la capacidad durable de las mezclas se realizaron ensayos de resistividad eléctrica, migración de cloruros, difusión de cloruros, carbonatación acelerada, absorción capilar y resistencia al hielo-deshielo. Los resultados ponen de manifiesto que la acción de las adiciones genera mejoras en las propiedades resistentes del material. Así, la adición de nanosílice proporciona mayores resistencias a compresión que la microsílice, sin embargo las mezclas binarias con bajas proporciones de adición producen mayores resistencias. Por otra parte, se observó mediante la determinación de las relaciones de gel/portlandita, que las mezclas que contienen nanosílice tienen una mayor actividad puzolánica que las que contienen microsílice. En las mezclas binarias se obtuvo como resultado que mientras mayor es el contenido de nanosílice en la mezcla mayor es la actividad puzolánica. Unido a lo anteriormente expuesto, el estudio de la porosidad da como resultado que la adición de nanosílice genera un refinamiento del tamaño de los poros mientras que la adición de microsílice disminuye la cantidad de los mismos sin variar el tamaño de poro medio. Por su parte, en las micrografías, se visualizó la formación de cristales procedentes de la hidratación del cemento. En ellas, se pudo observar, que al adicionar nanosílice, la velocidad de hidratación aumenta al aumentar la formación de monosulfoaluminatos con escasa presencia de etringita. Mientras que en las mezclas con adición de microsílice se observan mayor cantidad de cristales de etringita, lo que confirma que la velocidad de hidratación en estos últimos fue menor. Mediante el estudio de los resultados de las pruebas de durabilidad, se observó que no hay diferencias significativas entre el coeficiente de migración de cloruros y el coeficiente de difusión de cloruros en hormigones con adición de nano o microsílice. Aunque este coeficiente es ligeramente menor en mezclas con adición de microsílice. Sin embargo, en las mezclas binarias de ambas adiciones se obtuvo valores de los coeficientes de difusión o migración de cloruros inferiores a los obtenidos en mezclas con una única adición. Esto se evidencia en los resultados de las pruebas de resistividad eléctrica, de difusión de cloruros y de migración de cloruros. Esto puede ser debido a la suma de los efectos que producen el nano y micro adiciones en la porosidad. El resultado mostró que nanosílice tiene un papel importante en la reducción de los poros y la microsílice disminuye el volumen total de ellos. Esto permite definir la vida útil de estos hormigones a valores muy superiores a los exigidos por la EHE-08, por lo que es posible reducir, de forma notable, el recubrimiento exigido en ambiente de alta agresividad asegurando un buen comportamiento en servicio. Por otra parte, la pérdida de masa debido a los ciclos de congelación-descongelación es significativamente menor en los hormigones que contienen nanosílice que los que contienen microsílice. Este resultado está de acuerdo con el ensayo de absorción capilar. De manera general, se puede concluir que son las mezclas binarias y más concretamente la mezcla con un 5% de nanosílice y 2,5% de microsílice la que presenta los mejores resultados tanto en su comportamiento resistente con en su comportamiento durable. Esto puede ser debido a que en estas mezclas la nanosílice se comporta como un núcleo de activación de las reacciones puzolánicas rodeado de partículas de mayor tamaño. Además, el extraordinario comportamiento durable puede deberse también a la continuidad en la curva granulométrica por la existencia de la microsílice, el filler calizo, el cemento, la arena y la gravilla con tamaños de partículas que garantice mezclas muy compactas que presentan elevadas prestaciones. Since the middle of the decade of the 80 is being investigated about self-consolidating concrete. Every day, its use in the world of construction is more common due to their numerous advantages as its excellent fluidity such that it can flow under its own weight and fill formworks with complicated shapes and congested reinforcement without need for internal or external compactions. Moreover, the search for more resistant and durable materials, has led to the incorporation of additions to cement-based materials. In the last two decades, trials with nanomaterials, has experienced a large increase. The results so far obtained can assume not only an increase in the resistance of these materials but a change is its functionality. These nano particles, particularly the nano silica, not only improve their mechanical properties and especially its durable properties, but that may imply a substantial change in the conditions of use and in their life cycle. This work has as its main objective the study of the mechanical properties, the microstructural characteristics and durability capacity in one self-compacting concrete, when added as addition to cement: nano silica, micro silica o binary mixtures of both. To this effect, 10 concrete mixes have been made. As reference one with a certain amount of cement, limestone filler, viscosity modifying additive and water/binder relation. Furthermore they were manufactured with the same dosage three mix with addition of 2.5%, 5% and 7.5% of nano silica by weight of cement. Other three with 2.5%, 5% and 7.5% of micro silica and the remaining three with binary mixtures of 2.5%-2.5%, 5%-2.5% and 2.5%-5% of silica nano-micro silica respectively, b weight of cement, varying only the amount of superplasticizer to obtain concrete with characteristics of self-compactability. To observe the effects of the additions added to the concrete, an extensive experimental campaign was performed. It assessed, first, the characteristics of self-compactability of fresh material through the tests prescribed in the Spanish Structural Instruction Concrete EHE 08. The mechanical properties were evaluated by compression strength tests, indirect tensile strength and modulus of elasticity. The microstructural properties were analyzed by mercury intrusion porosimetry, thermogravimetric analysis and scanning electron microscopy. To study the durability, were performed electrical resistivity tests, migration and diffusion of chlorides, accelerated carbonation, capillary suction and resistance to freeze-thaw cycles. The results show that the action of the additions generates improvements in the strength properties of the material. Specifically, the addition of nano silica provides greater resistance to compression that the mix with micro silica, however binary mixtures with low addition rates generate higher strengths. Moreover, it was observed by determining relationships gel/portlandite, that the pozzolanic activity in the mixtures with nano silica was higher than in the mixtures with micro silica. In binary mixtures it was found that the highest content of nano silica in the mix is the one with the highest pozzolanic activity. Together with the foregoing, the study of the porosity results in the mixture with addition of nano silica generates a refinement of pore size while adding micro silica decreases the amount thereof without changing the average pore size. On the other hand, in the micrographs, the formation of crystals of cement hydration was visualized. In them, it was observed that by adding nano silica, the speed of hydration increases with increasing formation monosulfoaluminatos with scarce presence of ettringite. While in mixtures with addition of micro silica, ettringite crystals are observed, confirming that the hydration speed was lower in these mixtures. By studying the results of durability testing, it observed that no significant differences between the coefficient of migration of chlorides and coefficient of diffusion of chlorides in concretes with addition of nano or micro silica. Although this coefficient is slightly lower in mixtures with addition of micro silica. However, in binary mixtures of both additions was obtained values of coefficients of difusion o migration of chlorides lower than those obtained in mixtures with one of the additions. This is evidenced by the results of the tests electrical resistivity, diffusion of chlorides and migration of chlorides. This may be due to the sum of the effects that produced the nano and micro additions in the porosity. The result showed that nano silica has an important role in the pores refining and the micro silica decreases the total volume of them. This allows defining the life of these concretes in values to far exceed those required by the EHE-08, making it possible to reduce, significantly, the coating required in highly aggressive environment and to guarantee good behavior in service. Moreover, the mass loss due to freeze-thaw cycles is significantly lower in concretes containing nano silica than those containing micro silica. This result agrees with the capillary absorption test. In general, one can conclude that the binary mixture and more specifically the mixture with 5% of nano silica and 2.5% silica fume is which presents the best results in its durable behavior. This may be because in these mixtures, the nano silica behaves as cores activation of pozzolanic reactions. In addition, the durable extraordinary behavior may also be due to the continuity of the grading curve due to existence of micro silica, limestone filler, cement, sand and gravel with particle sizes that guarantees very compact mixtures which have high performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La tesis doctoral “Estudio de hormigón autocompactante con árido reciclado” realizada dentro del programa de doctorado de la Universidad Politécnica de Madrid “Máster en técnicas experimentales avanzadas en la ingeniería civil”, investiga la sustitución de áridos gruesos naturales por reciclados en hormigones autocompactantes, para demostrar la posibilidad de utilización de este tipo de árido en la fabricación de hormigones autocompactantes. En cuanto a la línea experimental adoptada, la primera fase corresponde a la caracterización de los cementos y de los áridos naturales y reciclados. En ella se han obtenido las principales características físicas y mecánicas. Una vez validadas las características de todos los materiales y adoptada una dosificación de hormigón autocompactante, se han elaborado cuatro dosificaciones con cuatro grados de incorporación de árido reciclado cada una, y una dosificación con seis grados de incorporación de árido reciclado. Fabricándose un total de 22 tipos de hormigón diferentes, sin contar todas las amasadas iniciales hasta la consecución de un hormigón autocompactante. Las cinco dosificaciones se han dividido en dos grupos para poder analizar con mayor grado de definición las características de cada uno. El primer grupo es aquel que contienen los hormigones con diferentes relaciones a/c, que incluye a la muestra A (a/c=0.55), muestra D (a/c=0.50) y muestra E (a/c=0.45). Por el contrario, el segundo grupo dispone de una relación fija de a/c=0.45 pero diferentes relaciones a/c efectivas, ya que algunas de las muestras disponen de un contenido de agua que permite contrarrestar la mayor absorción del árido reciclado. Estando en este grupo la muestra E (sin agua adicional), la muestra H (con presaturación de los áridos) y la muestra I (con un aporte de agua junto con el agua de amasado. Una vez fabricados los hormigones, se pasa a la segunda fase del estudio correspondiente a la caracterización del hormigón en estado fresco. En esta fase se han llevado a cabo los ensayos de escurrimiento, escurrimiento con anillo japonés, ensayo embudo en V y embudo V a los 5 minutos. Todos estos ensayos permiten evaluar la autocompactabilidad del hormigón según el anejo 17 de la EHE-08. La tercera fase del estudio se centra en la caracterización de los hormigones en estado endurecido, evaluando las características resistentes del hormigón. Para ello, se han realizado los ensayos de resistencia a compresión, a tracción, módulo de elasticidad y coeficiente de Poisson. En la cuarta y última fase, se han analizado la durabilidad de los hormigones, debido que a pesar de ofrecer una adecuada autocompactabilidad y resistencia mecánica, se debe de obtener un hormigón con una correcta durabilidad. Para tal fin, se ha determinado la resistencia a la penetración de agua bajo presión y carbonatación de las probetas. Este último ensayo se ha realizado teniendo en cuenta las condiciones del denominado método natural, con una exposición al ambiente de 90 días y 365 días. Con todos estos resultados se elaboraron las conclusiones derivadas de la investigación, demostrándose la posibilidad de fabricación de hormigones autocompactantes con árido reciclado (HACR) con sustituciones de hasta un 40%, e incluso dependiendo de la relación a/c con sustituciones del 60% y el 80%. ABSTRACT The doctoral thesis titled Analysis of self-compacting concrete with recycled aggregates, has been developed in accordance with the doctoral program: Master degree in advanced experimental techniques in civil engineering, at UPM. It investigates the possibility of replacing natural coarse aggregates with recycled coarse aggregates, in the field of self-compacting concrete. The aim of this dissertation is to analyze the possibility of using recycled coarse aggregates in the manufacture process of self-compacting concretes. Regarding the experimental part, the first phase refers to mechanical and physical characterization of some materials such as cement, natural aggregates and recycled aggregates. Once the characteristics of all materials have been validated and the mixing proportions have been adopted, four different mixes are elaborated by using four dosage rates of recycled aggregates in each one of the samples. Moreover, an additional sample consisting of six different dosages of recycled aggregates is considered. A total number of 22 concrete specimens have been manufactured, without including all the initial kneading samples used to obtain this type of self-compacting concrete. The aforementioned mixes have been divided in two different groups to be able to analyze with more definition. The first group is the one in which the concrete contains different values of the water - cement ratio. It includes the next samples: A (w/c=0.55), D (w/c=0.50) and E (w/c=0.45). The second group has a fixed water -cement ratio, w/c=0.45, but a different effective water - cement ratio, since some of the samples have a water content that enables to offset the major absorption of the recycled aggregates, being in this group the mixing E (without additional water), the mixing H (with saturated recycled aggregate) and the mixing I (with an additional water content to the existing kneading water). Once the concrete samples have been manufactured, the following section deals with the characterization of the concrete in fresh conditions. To accomplish this, several characterization tests are carried out such as the slump-flow test, test slump flow with Japanese ring, test V-funnel and V-funnel to 5 minutes. These tests are used to assess the self-compacting conditions according to the annex 17 of the EHE-08 The third phase of the study focuses on the mechanical characterization, the assessment of the strength properties of the concrete such as compressive strength, tensile strength, modulus of elasticity and Poisson´s ratio. Within the fourth and last phase, durability of the concrete is evaluated. This fact is motivated by the need to obtain not only good self-compacting and mechanical strength properties, but also adequate durability conditions. To accomplish the aforementioned durability, resistance of the samples under certain conditions such as water penetration pressure and carbonation, has been obtained. The latter test has been carried out taking into account the natural method, with an exhibition period to the environment of 90 days and 365 days. Through the results coming from this research work, it has been possible to obtain the main conclusions. It has been demonstrated the possibility to manufacture self-compacting concrete by using recycled aggregates with replacement rates up to 40% or, depending on the w/c ratio, rates of 60% and 80% might be reached.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study was designed to determine the effect of temperature on the mechanical strength (in both in vivo and post-exposure trials) of two alkaline cements (without OPC): (a) 100% fly ash (FA) and (b) 85% FA + 15% bauxite, the activated alkaline solution used was 85% 10-M NaOH + 15% sodium silicate. A Type I 42.5 R Portland cement was used as a control. Two series of trials were conducted: (i) in vivo trials in which bending and compressive strength, fracture toughness and modulus of elasticity were determined at different temperatures; and (ii) post-firing trials, assessing residual bending and compres-sive strength after a 1-h exposure to high temperatures and subsequent cooling. The findings showed that from 25 to 600 C, irrespective of the type of test (in vivo or post-firing), compressive mechanical strength rose, with the specimens exhibiting elastic behaviour and consequently brittle failure. At tem-peratures of over 600 C, behaviour differed depending on the type of test: (i) in the in vivo trials the high temperature induced pseudo-plastic strain and a decline in mechanical strength that did not necessarily entail specimen failure; (ii) in the post-firing trials, compressive strength rose.