20 resultados para efficiency of markets


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The outdoor measurements of a single-cell concentrator PV module reaching a regressed 35.6% efficiency and a maximum peak efficiency of 36.0% (both corrected @Tcell=25ºC) are presented. This is the result of the joint effort by LPI and Solar Junction to demonstrate the potential of combining their respective state-of-the-art concentrator optics and solar cells. The LPI concentrator used is an FK, which is an advanced nonimaging concentrator using 4-channel Köhler homogenization, with a primary Fresnel lens and a refractive secondary made of glass. Solar Junction’s cell is a triplejunction solar cell with the A-SLAMTM architecture using dilute-nitrides.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Optical hyperthermia systems based on the laser irradiation of gold nanorods seem to be a promising tool in the development of therapies against cancer. After a proof of concept in which the authors demonstrated the efficiency of this kind of systems, a modeling process based on an equivalent thermal-electric circuit has been carried out to determine the thermal parameters of the system and an energy balance obtained from the time-dependent heating and cooling temperature curves of the irradiated samples in order to obtain the photothermal transduction efficiency. By knowing this parameter, it is possible to increase the effectiveness of the treatments, thanks to the possibility of predicting the response of the device depending on the working configuration. As an example, the thermal behavior of two different kinds of nanoparticles is compared. The results show that, under identical conditions, the use of PEGylated gold nanorods allows for a more efficient heating compared with bare nanorods, and therefore, it results in a more effective therapy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

El mercado ibérico de futuros de energía eléctrica gestionado por OMIP (“Operador do Mercado Ibérico de Energia, Pólo Português”, con sede en Lisboa), también conocido como el mercado ibérico de derivados de energía, comenzó a funcionar el 3 de julio de 2006. Se analiza la eficiencia de este mercado organizado, por lo que se estudia la precisión con la que sus precios de futuros predicen el precio de contado. En dicho mercado coexisten dos modos de negociación: el mercado continuo (modo por defecto) y la contratación mediante subasta. En la negociación en continuo, las órdenes anónimas de compra y de venta interactúan de manera inmediata e individual con órdenes contrarias, dando lugar a operaciones con un número indeterminado de precios para cada contrato. En la negociación a través de subasta, un precio único de equilibrio maximiza el volumen negociado, liquidándose todas las operaciones a ese precio. Adicionalmente, los miembros negociadores de OMIP pueden liquidar operaciones “Over-The-Counter” (OTC) a través de la cámara de compensación de OMIP (OMIClear). Las cinco mayores empresas españolas de distribución de energía eléctrica tenían la obligación de comprar electricidad hasta julio de 2009 en subastas en OMIP, para cubrir parte de sus suministros regulados. De igual manera, el suministrador de último recurso portugués mantuvo tal obligación hasta julio de 2010. Los precios de equilibrio de esas subastas no han resultado óptimos a efectos retributivos de tales suministros regulados dado que dichos precios tienden a situarse ligeramente sesgados al alza. La prima de riesgo ex-post, definida como la diferencia entre los precios a plazo y de contado en el periodo de entrega, se emplea para medir su eficiencia de precio. El mercado de contado, gestionado por OMIE (“Operador de Mercado Ibérico de la Energía”, conocido tradicionalmente como “OMEL”), tiene su sede en Madrid. Durante los dos primeros años del mercado de futuros, la prima de riesgo media tiende a resultar positiva, al igual que en otros mercados europeos de energía eléctrica y gas natural. En ese periodo, la prima de riesgo ex-post tiende a ser negativa en los mercados de petróleo y carbón. Los mercados de energía tienden a mostrar niveles limitados de eficiencia de mercado. La eficiencia de precio del mercado de futuros aumenta con el desarrollo de otros mecanismos coexistentes dentro del mercado ibérico de electricidad (conocido como “MIBEL”) –es decir, el mercado dominante OTC, las subastas de centrales virtuales de generación conocidas en España como Emisiones Primarias de Energía, y las subastas para cubrir parte de los suministros de último recurso conocidas en España como subastas CESUR– y con una mayor integración de los mercados regionales europeos de energía eléctrica. Se construye un modelo de regresión para analizar la evolución de los volúmenes negociados en el mercado continuo durante sus cuatro primeros años como una función de doce indicadores potenciales de liquidez. Los únicos indicadores significativos son los volúmenes negociados en las subastas obligatorias gestionadas por OMIP, los volúmenes negociados en el mercado OTC y los volúmenes OTC compensados por OMIClear. El número de creadores de mercado, la incorporación de agentes financieros y compañías de generación pertenecientes a grupos integrados con suministradores de último recurso, y los volúmenes OTC compensados por OMIClear muestran una fuerte correlación con los volúmenes negociados en el mercado continuo. La liquidez de OMIP está aún lejos de los niveles alcanzados por los mercados europeos más maduros (localizados en los países nórdicos (Nasdaq OMX Commodities) y Alemania (EEX)). El operador de mercado y su cámara de compensación podrían desarrollar acciones eficientes de marketing para atraer nuevos agentes activos en el mercado de contado (p.ej. industrias consumidoras intensivas de energía, suministradores, pequeños productores, compañías energéticas internacionales y empresas de energías renovables) y agentes financieros, captar volúmenes del opaco OTC, y mejorar el funcionamiento de los productos existentes aún no líquidos. Resultaría de gran utilidad para tales acciones un diálogo activo con todos los agentes (participantes en el mercado, operador de mercado de contado, y autoridades supervisoras). Durante sus primeros cinco años y medio, el mercado continuo presenta un crecimento de liquidez estable. Se mide el desempeño de sus funciones de cobertura mediante la ratio de posición neta obtenida al dividir la posición abierta final de un contrato de derivados mensual entre su volumen acumulado en la cámara de compensación. Los futuros carga base muestran la ratio más baja debido a su buena liquidez. Los futuros carga punta muestran una mayor ratio al producirse su menor liquidez a través de contadas subastas fijadas por regulación portuguesa. Las permutas carga base liquidadas en la cámara de compensación ubicada en Madrid –MEFF Power, activa desde el 21 de marzo de 2011– muestran inicialmente valores altos debido a bajos volúmenes registrados, dado que esta cámara se emplea principalmente para vencimientos pequeños (diario y semanal). Dicha ratio puede ser una poderosa herramienta de supervisión para los reguladores energéticos cuando accedan a todas las transacciones de derivados en virtud del Reglamento Europeo sobre Integridad y Transparencia de los Mercados de Energía (“REMIT”), en vigor desde el 28 de diciembre de 2011. La prima de riesgo ex-post tiende a ser positiva en todos los mecanismos (futuros en OMIP, mercado OTC y subastas CESUR) y disminuye debido a la curvas de aprendizaje y al efecto, desde el año 2011, del precio fijo para la retribución de la generación con carbón autóctono. Se realiza una comparativa con los costes a plazo de generación con gas natural (diferencial “clean spark spread”) obtenido como la diferencia entre el precio del futuro eléctrico y el coste a plazo de generación con ciclo combinado internalizando los costes de emisión de CO2. Los futuros eléctricos tienen una elevada correlación con los precios de gas europeos. Los diferenciales de contratos con vencimiento inmediato tienden a ser positivos. Los mayores diferenciales se dan para los contratos mensuales, seguidos de los trimestrales y anuales. Los generadores eléctricos con gas pueden maximizar beneficios con contratos de menor vencimiento. Los informes de monitorización por el operador de mercado que proporcionan transparencia post-operacional, el acceso a datos OTC por el regulador energético, y la valoración del riesgo regulatorio pueden contribuir a ganancias de eficiencia. Estas recomendaciones son también válidas para un potencial mercado ibérico de futuros de gas, una vez que el hub ibérico de gas –actualmente en fase de diseño, con reuniones mensuales de los agentes desde enero de 2013 en el grupo de trabajo liderado por el regulador energético español– esté operativo. El hub ibérico de gas proporcionará transparencia al atraer más agentes y mejorar la competencia, incrementando su eficiencia, dado que en el mercado OTC actual no se revela precio alguno de gas. ABSTRACT The Iberian Power Futures Market, managed by OMIP (“Operador do Mercado Ibérico de Energia, Pólo Português”, located in Lisbon), also known as the Iberian Energy Derivatives Market, started operations on 3 July 2006. The market efficiency, regarding how well the future price predicts the spot price, is analysed for this energy derivatives exchange. There are two trading modes coexisting within OMIP: the continuous market (default mode) and the call auction. In the continuous trading, anonymous buy and sell orders interact immediately and individually with opposite side orders, generating trades with an undetermined number of prices for each contract. In the call auction trading, a single price auction maximizes the traded volume, being all trades settled at the same price (equilibrium price). Additionally, OMIP trading members may settle Over-the-Counter (OTC) trades through OMIP clearing house (OMIClear). The five largest Spanish distribution companies have been obliged to purchase in auctions managed by OMIP until July 2009, in order to partly cover their portfolios of end users’ regulated supplies. Likewise, the Portuguese last resort supplier kept that obligation until July 2010. The auction equilibrium prices are not optimal for remuneration purposes of regulated supplies as such prices seem to be slightly upward biased. The ex-post forward risk premium, defined as the difference between the forward and spot prices in the delivery period, is used to measure its price efficiency. The spot market, managed by OMIE (Market Operator of the Iberian Energy Market, Spanish Pool, known traditionally as “OMEL”), is located in Madrid. During the first two years of the futures market, the average forward risk premium tends to be positive, as it occurs with other European power and natural gas markets. In that period, the ex-post forward risk premium tends to be negative in oil and coal markets. Energy markets tend to show limited levels of market efficiency. The price efficiency of the Iberian Power Futures Market improves with the market development of all the coexistent forward contracting mechanisms within the Iberian Electricity Market (known as “MIBEL”) – namely, the dominant OTC market, the Virtual Power Plant Auctions known in Spain as Energy Primary Emissions, and the auctions catering for part of the last resort supplies known in Spain as CESUR auctions – and with further integration of European Regional Electricity Markets. A regression model tracking the evolution of the traded volumes in the continuous market during its first four years is built as a function of twelve potential liquidity drivers. The only significant drivers are the traded volumes in OMIP compulsory auctions, the traded volumes in the OTC market, and the OTC cleared volumes by OMIClear. The amount of market makers, the enrolment of financial members and generation companies belonging to the integrated group of last resort suppliers, and the OTC cleared volume by OMIClear show strong correlation with the traded volumes in the continuous market. OMIP liquidity is still far from the levels reached by the most mature European markets (located in the Nordic countries (Nasdaq OMX Commodities) and Germany (EEX)). The market operator and its clearing house could develop efficient marketing actions to attract new entrants active in the spot market (e.g. energy intensive industries, suppliers, small producers, international energy companies and renewable generation companies) and financial agents as well as volumes from the opaque OTC market, and to improve the performance of existing illiquid products. An active dialogue with all the stakeholders (market participants, spot market operator, and supervisory authorities) will help to implement such actions. During its firs five and a half years, the continuous market shows steady liquidity growth. The hedging performance is measured through a net position ratio obtained from the final open interest of a month derivatives contract divided by its accumulated cleared volume. The base load futures in the Iberian energy derivatives exchange show the lowest ratios due to good liquidity. The peak futures show bigger ratios as their reduced liquidity is produced by auctions fixed by Portuguese regulation. The base load swaps settled in the clearing house located in Spain – MEFF Power, operating since 21 March 2011, with a new denomination (BME Clearing) since 9 September 2013 – show initially large values due to low registered volumes, as this clearing house is mainly used for short maturity (daily and weekly swaps). The net position ratio can be a powerful oversight tool for energy regulators when accessing to all the derivatives transactions as envisaged by European regulation on Energy Market Integrity and Transparency (“REMIT”), in force since 28 December 2011. The ex-post forward risk premium tends to be positive in all existing mechanisms (OMIP futures, OTC market and CESUR auctions) and diminishes due to the learning curve and the effect – since year 2011 – of the fixed price retributing the indigenous coal fired generation. Comparison with the forward generation costs from natural gas (“clean spark spread”) – obtained as the difference between the power futures price and the forward generation cost with a gas fired combined cycle plant taking into account the CO2 emission rates – is also performed. The power futures are strongly correlated with European gas prices. The clean spark spreads built with prompt contracts tend to be positive. The biggest clean spark spreads are for the month contract, followed by the quarter contract and then by the year contract. Therefore, gas fired generation companies can maximize profits trading with contracts of shorter maturity. Market monitoring reports by the market operator providing post-trade transparency, OTC data access by the energy regulator, and assessment of the regulatory risk can contribute to efficiency gains. The same recommendations are also valid for a potential Iberian gas futures market, once an Iberian gas hub – currently in a design phase, with monthly meetings amongst the stakeholders in a Working Group led by the Spanish energy regulatory authority since January 2013 – is operating. The Iberian gas hub would bring transparency attracting more shippers and improving competition and thus its efficiency, as no gas price is currently disclosed in the existing OTC market.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

El actual contexto de fabricación, con incrementos en los precios de la energía, una creciente preocupación medioambiental y cambios continuos en los comportamientos de los consumidores, fomenta que los responsables prioricen la fabricación respetuosa con el medioambiente. El paradigma del Internet de las Cosas (IoT) promete incrementar la visibilidad y la atención prestada al consumo de energía gracias tanto a sensores como a medidores inteligentes en los niveles de máquina y de línea de producción. En consecuencia es posible y sencillo obtener datos de consumo de energía en tiempo real proveniente de los procesos de fabricación, pero además es posible analizarlos para incrementar su importancia en la toma de decisiones. Esta tesis pretende investigar cómo utilizar la adopción del Internet de las Cosas en el nivel de planta de producción, en procesos discretos, para incrementar la capacidad de uso de la información proveniente tanto de la energía como de la eficiencia energética. Para alcanzar este objetivo general, la investigación se ha dividido en cuatro sub-objetivos y la misma se ha desarrollado a lo largo de cuatro fases principales (en adelante estudios). El primer estudio de esta tesis, que se apoya sobre una revisión bibliográfica comprehensiva y sobre las aportaciones de expertos, define prácticas de gestión de la producción que son energéticamente eficientes y que se apoyan de un modo preeminente en la tecnología IoT. Este primer estudio también detalla los beneficios esperables al adoptar estas prácticas de gestión. Además, propugna un marco de referencia para permitir la integración de los datos que sobre el consumo energético se obtienen en el marco de las plataformas y sistemas de información de la compañía. Esto se lleva a cabo con el objetivo último de remarcar cómo estos datos pueden ser utilizados para apalancar decisiones en los niveles de procesos tanto tácticos como operativos. Segundo, considerando los precios de la energía como variables en el mercado intradiario y la disponibilidad de información detallada sobre el estado de las máquinas desde el punto de vista de consumo energético, el segundo estudio propone un modelo matemático para minimizar los costes del consumo de energía para la programación de asignaciones de una única máquina que deba atender a varios procesos de producción. Este modelo permite la toma de decisiones en el nivel de máquina para determinar los instantes de lanzamiento de cada trabajo de producción, los tiempos muertos, cuándo la máquina debe ser puesta en un estado de apagada, el momento adecuado para rearrancar, y para pararse, etc. Así, este modelo habilita al responsable de producción de implementar el esquema de producción menos costoso para cada turno de producción. En el tercer estudio esta investigación proporciona una metodología para ayudar a los responsables a implementar IoT en el nivel de los sistemas productivos. Se incluye un análisis del estado en que se encuentran los sistemas de gestión de energía y de producción en la factoría, así como también se proporcionan recomendaciones sobre procedimientos para implementar IoT para capturar y analizar los datos de consumo. Esta metodología ha sido validada en un estudio piloto, donde algunos indicadores clave de rendimiento (KPIs) han sido empleados para determinar la eficiencia energética. En el cuarto estudio el objetivo es introducir una vía para obtener visibilidad y relevancia a diferentes niveles de la energía consumida en los procesos de producción. El método propuesto permite que las factorías con procesos de producción discretos puedan determinar la energía consumida, el CO2 emitido o el coste de la energía consumida ya sea en cualquiera de los niveles: operación, producto o la orden de fabricación completa, siempre considerando las diferentes fuentes de energía y las fluctuaciones en los precios de la misma. Los resultados muestran que decisiones y prácticas de gestión para conseguir sistemas de producción energéticamente eficientes son posibles en virtud del Internet de las Cosas. También, con los resultados de esta tesis los responsables de la gestión energética en las compañías pueden plantearse una aproximación a la utilización del IoT desde un punto de vista de la obtención de beneficios, abordando aquellas prácticas de gestión energética que se encuentran más próximas al nivel de madurez de la factoría, a sus objetivos, al tipo de producción que desarrolla, etc. Así mismo esta tesis muestra que es posible obtener reducciones significativas de coste simplemente evitando los períodos de pico diario en el precio de la misma. Además la tesis permite identificar cómo el nivel de monitorización del consumo energético (es decir al nivel de máquina), el intervalo temporal, y el nivel del análisis de los datos son factores determinantes a la hora de localizar oportunidades para mejorar la eficiencia energética. Adicionalmente, la integración de datos de consumo energético en tiempo real con datos de producción (cuando existen altos niveles de estandarización en los procesos productivos y sus datos) es esencial para permitir que las factorías detallen la energía efectivamente consumida, su coste y CO2 emitido durante la producción de un producto o componente. Esto permite obtener una valiosa información a los gestores en el nivel decisor de la factoría así como a los consumidores y reguladores. ABSTRACT In today‘s manufacturing scenario, rising energy prices, increasing ecological awareness, and changing consumer behaviors are driving decision makers to prioritize green manufacturing. The Internet of Things (IoT) paradigm promises to increase the visibility and awareness of energy consumption, thanks to smart sensors and smart meters at the machine and production line level. Consequently, real-time energy consumption data from the manufacturing processes can be easily collected and then analyzed, to improve energy-aware decision-making. This thesis aims to investigate how to utilize the adoption of the Internet of Things at shop floor level to increase energy–awareness and the energy efficiency of discrete production processes. In order to achieve the main research goal, the research is divided into four sub-objectives, and is accomplished during four main phases (i.e., studies). In the first study, by relying on a comprehensive literature review and on experts‘ insights, the thesis defines energy-efficient production management practices that are enhanced and enabled by IoT technology. The first study also explains the benefits that can be obtained by adopting such management practices. Furthermore, it presents a framework to support the integration of gathered energy data into a company‘s information technology tools and platforms, which is done with the ultimate goal of highlighting how operational and tactical decision-making processes could leverage such data in order to improve energy efficiency. Considering the variable energy prices in one day, along with the availability of detailed machine status energy data, the second study proposes a mathematical model to minimize energy consumption costs for single machine production scheduling during production processes. This model works by making decisions at the machine level to determine the launch times for job processing, idle time, when the machine must be shut down, ―turning on‖ time, and ―turning off‖ time. This model enables the operations manager to implement the least expensive production schedule during a production shift. In the third study, the research provides a methodology to help managers implement the IoT at the production system level; it includes an analysis of current energy management and production systems at the factory, and recommends procedures for implementing the IoT to collect and analyze energy data. The methodology has been validated by a pilot study, where energy KPIs have been used to evaluate energy efficiency. In the fourth study, the goal is to introduce a way to achieve multi-level awareness of the energy consumed during production processes. The proposed method enables discrete factories to specify energy consumption, CO2 emissions, and the cost of the energy consumed at operation, production and order levels, while considering energy sources and fluctuations in energy prices. The results show that energy-efficient production management practices and decisions can be enhanced and enabled by the IoT. With the outcomes of the thesis, energy managers can approach the IoT adoption in a benefit-driven way, by addressing energy management practices that are close to the maturity level of the factory, target, production type, etc. The thesis also shows that significant reductions in energy costs can be achieved by avoiding high-energy price periods in a day. Furthermore, the thesis determines the level of monitoring energy consumption (i.e., machine level), the interval time, and the level of energy data analysis, which are all important factors involved in finding opportunities to improve energy efficiency. Eventually, integrating real-time energy data with production data (when there are high levels of production process standardization data) is essential to enable factories to specify the amount and cost of energy consumed, as well as the CO2 emitted while producing a product, providing valuable information to decision makers at the factory level as well as to consumers and regulators.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Given the global energy and environmental situation, the European Union has been issuing directives with increasingly demanding requirements in term of the energy efficiency in buildings. The international competition of sustainable houses, Solar Decathlon Europe (SDE), is aligned with these European objectives. SDE houses are low energy solar buildings that must reach the near to zero energy houses’ goal. In the 2012 edition, in order to emphasize its significance, the Energy Efficiency Contest was added. SDE houses’ interior comfort, functioning and energy performance is monitored. The monitoring data can give an idea about the efficiency of the houses. However, a jury comprised by international experts is responsible for carrying out the houses energy efficiency evaluation. Passive strategies and houses services are analyzed. Additionally, the jury's assessment has been compared with the behavior of the houses during the monitoring period. Comparative studies make emphasis on the energy aspects, houses functioning and their interior comfort. Conclusions include thoughts related with the evaluation process, the results of the comparative studies and suggestions for the next competitions.