115 resultados para cloud-based computing
Resumo:
As advanced Cloud services are becoming mainstream, the contribution of data centers in the overall power consumption of modern cities is growing dramatically. The average consumption of a single data center is equivalent to the energy consumption of 25.000 households. Modeling the power consumption for these infrastructures is crucial to anticipate the effects of aggressive optimization policies, but accurate and fast power modeling is a complex challenge for high-end servers not yet satisfied by analytical approaches. This work proposes an automatic method, based on Multi-Objective Particle Swarm Optimization, for the identification of power models of enterprise servers in Cloud data centers. Our approach, as opposed to previous procedures, does not only consider the workload consolidation for deriving the power model, but also incorporates other non traditional factors like the static power consumption and its dependence with temperature. Our experimental results shows that we reach slightly better models than classical approaches, but simul- taneously simplifying the power model structure and thus the numbers of sensors needed, which is very promising for a short-term energy prediction. This work, validated with real Cloud applications, broadens the possibilities to derive efficient energy saving techniques for Cloud facilities.
Resumo:
En el campo de la biomedicina se genera una inmensa cantidad de imágenes diariamente. Para administrarlas es necesaria la creación de sistemas informáticos robustos y ágiles, que necesitan gran cantidad de recursos computacionales. El presente artículo presenta un servicio de cloud computing capaz de manejar grandes colecciones de imágenes biomédicas. Gracias a este servicio organizaciones y usuarios podrían administrar sus imágenes biomédicas sin necesidad de poseer grandes recursos informáticos. El servicio usa un sistema distribuido multi agente donde las imágenes son procesadas y se extraen y almacenan en una estructura de datos las regiones que contiene junto con sus características. Una característica novedosa del sistema es que una misma imagen puede ser dividida, y las sub-imágenes resultantes pueden ser almacenadas por separado por distintos agentes. Esta característica ayuda a mejorar el rendimiento del sistema a la hora de buscar y recuperar las imágenes almacenadas.
Resumo:
The use of cloud computing is extending to all kind of systems, including the ones that are part of Critical Infrastructures, and measuring the reliability is becoming more difficult. Computing is becoming the 5th utility, in part thanks to the use of cloud services. Cloud computing is used now by all types of systems and organizations, including critical infrastructure, creating hidden inter-dependencies on both public and private cloud models. This paper investigates the use of cloud computing by critical infrastructure systems, the reliability and continuity of services risks associated with their use by critical systems. Some examples are presented of their use by different critical industries, and even when the use of cloud computing by such systems is not widely extended, there is a future risk that this paper presents. The concepts of macro and micro dependability and the model we introduce are useful for inter-dependency definition and for analyzing the resilience of systems that depend on other systems, specifically in the cloud model.
Resumo:
El objetivo principal de esta Tesis es extender la utilización del “Soft- Computing” para el control de vehículos sin piloto utilizando visión. Este trabajo va más allá de los típicos sistemas de control utilizados en entornos altamente controlados, demonstrando la fuerza y versatilidad de la lógica difusa (Fuzzy Logic) para controlar vehículos aéreos y terrestres en un abanico de applicaciones diferentes. Para esta Tesis se ha realizado un gran número de pruebas reales en las cuales los controladores difusos han manejado una plataforma visual “pan-and-tilt”, un helicoptero, un coche comercial y hasta dos tipos de quadrirotores. El uso del método de optimización “Cross-Entropy” ha sido utilizado para mejorar el comportamiento de algunos de los controladores borrosos. Todos los controladores difusos presentados en ésta Tesis han sido implementados utilizando un código desarrollado por el candidato para tal efecto, llamado MOFS (Miguel Olivares’ Fuzzy Software). Diferentes algoritmos visuales han sido utilizados para adquirir la informaci´on visual del entorno, “Cmashift”, descomposición de la homografía y detección de marcas de realidad aumentada, entre otros. Dicha información visual ha sido utilizada como entrada de los controladores difusos para comandar los vehículos en las diferentes applicaciones autonomas. El volante de un vehículo comercial ha sido controlado para realizar pruebas de conducción autónoma en condiciones de tráfico similares a las de una ciudad. El sistema ha llegado a completar con éxito pruebas de más de 6 km sin ninguna interacción humana, mediante el seguimiento de una línea pintada en el suelo. El limitado campo visual del sistema no ha sido impedimento para alcanzar velocidades de hasta 48 km/h y ser guiado autonomamente en curvas de radio reducido. Objetos estáticos y móviles han sido seguidos desde un helicoptero no tripulado, mediante el control de una plataforma visual “pan-and-tilt”. ´Éste mismo helicoptero ha sido controlado completamente para su aterrizaje autonomo, mediante el control del movimiento lateral (roll), horizontal (pitch) y de altitud. El seguimiento de objetos volantes ha sido resulto mediante el control horizontal (pitch) y de orientación (heading) de un quadrirotor. Para tareas de evitación de obstáculos se ha implementado un controlador difuso para el manejo de la orientación (heading) de un quadrirotor. En el campo de la optimización de controladores se ha aportado al estado del arte una extensión del uso del método “Cross-Entropy”. Está Tesis presenta una novedosa implementación de dicho método para la optimización de las ganancias, la posición y medida de los conjuntos de las funciones de pertenecia y el peso de las reglas para mejorar el comportamiento de un controlador difuso. Dichos procesos de optimización se han realizado utilizando “ROS” y “Matlab Simulink” para obtener mejores resultados para la evitación de colisiones con vehículos aéreos no tripulados. Ésta Tesis demuestra que los controladores implementados con lógica difusa son altamente capaces de controlador sistemas sin tener en cuenta el modelo del vehículo a controlador en entornos altamente perturbables con un sensor de bajo coste como es una cámara. El ruido presentes causado por los cambios de iluminación en la adquisición de imágenes y la alta incertidumbre en la detección visual han sido manejados satisfactoriamente por ésta técnica de de “Soft-Computing” para distintas aplicaciones tanto con vehículos aéreos como terrestres.
Resumo:
Los continuos avances tecnológicos están trayendo consigo nuevas formas de almacenar, tratar y comunicar datos personales. Es necesario repensar el derecho fundamental a la protección de datos, y arbitrar mecanismos para adaptarlo a las nuevas formas de tratamiento. a nivel europeo se está trabajando en una nueva propuesta de regulación que consideramos, en general, muy apropiada para afrontar los nuevos retos en esta materia. para ejemplificar todo esto, en el presente estudio se plantea de forma detallada el caso de la computación en nube, sus principales características y algunas preocupaciones acerca de los riesgos potenciales que su utilización trae consigo. Abstract: Rapid technological developments are bringing new ways to store, process and communicate personal data. We need to rethink the fundamental right to data protection and adapt it to new forms of treatment. there is a new «european» proposal for a regulation on the protection of individuals with regard to the processing of personal data, well suited to meet the new challenges. this study offers one example of this: the cloud computing, its main characteristics and some concerns about the potential risks that its use entails.
Resumo:
In the present competitive environment, companies are wondering how to reduce their IT costs while increasing their efficiency and agility to react when changes in the business processes are required. Cloud Computing is the latest paradigm to optimize the use of IT resources considering ?everything as a service? and receiving these services from the Cloud (Internet) instead of owning and managing hardware and software assets. The benefits from the model are clear. However, there are also concerns and issues to be solved before Cloud Computing spreads across the different industries. This model will allow a pay-per-use model for the IT services and many benefits like cost savings, agility to react when business demands changes and simplicity because there will not be any infrastructure to operate and administrate. It will be comparable to the well known utilities like electricity, water or gas companies. However, this paper underlines several risk factors of the model. Leading technology companies should research on solutions to minimize the risks described in this article. Keywords - Cloud Computing, Utility Computing, Elastic Computing, Enterprise Agility
Resumo:
Access to information and continuous education represent critical factors for physicians and researchers over the world. For African professionals, this situation is even more problematic due to the frequently difficult access to technological infrastructures and basic information. Both education and information technologies (e.g., including hardware, software or networking) are expensive and unaffordable for many African professionals. Thus, the use of e-learning and an open approach to information exchange and software use have been already proposed to improve medical informatics issues in Africa. In this context, the AFRICA BUILD project, supported by the European Commission, aims to develop a virtual platform to provide access to a wide range of biomedical informatics and learning resources to professionals and researchers in Africa. A consortium of four African and four European partners work together in this initiative. In this framework, we have developed a prototype of a cloud-computing infrastructure to demonstrate, as a proof of concept, the feasibility of this approach. We have conducted the experiment in two different locations in Africa: Burundi and Egypt. As shown in this paper, technologies such as cloud computing and the use of open source medical software for a large range of case present significant challenges and opportunities for developing countries, such as many in Africa.
Resumo:
In just a few years cloud computing has become a very popular paradigm and a business success story, with storage being one of the key features. To achieve high data availability, cloud storage services rely on replication. In this context, one major challenge is data consistency. In contrast to traditional approaches that are mostly based on strong consistency, many cloud storage services opt for weaker consistency models in order to achieve better availability and performance. This comes at the cost of a high probability of stale data being read, as the replicas involved in the reads may not always have the most recent write. In this paper, we propose a novel approach, named Harmony, which adaptively tunes the consistency level at run-time according to the application requirements. The key idea behind Harmony is an intelligent estimation model of stale reads, allowing to elastically scale up or down the number of replicas involved in read operations to maintain a low (possibly zero) tolerable fraction of stale reads. As a result, Harmony can meet the desired consistency of the applications while achieving good performance. We have implemented Harmony and performed extensive evaluations with the Cassandra cloud storage on Grid?5000 testbed and on Amazon EC2. The results show that Harmony can achieve good performance without exceeding the tolerated number of stale reads. For instance, in contrast to the static eventual consistency used in Cassandra, Harmony reduces the stale data being read by almost 80% while adding only minimal latency. Meanwhile, it improves the throughput of the system by 45% while maintaining the desired consistency requirements of the applications when compared to the strong consistency model in Cassandra.
Resumo:
This work describes a semantic extension for a user-smart object interaction model based on the ECA paradigm (Event-Condition-Action). In this approach, smart objects publish their sensing (event) and action capabilities in the cloud and mobile devices are prepared to retrieve them and act as mediators to configure personalized behaviours for the objects. In this paper, the information handled by this interaction system has been shaped according several semantic models that, together with the integration of an embedded ontological and rule-based reasoner, are exploited in order to (i) automatically detect incompatible ECA rules configurations and to (ii) support complex ECA rules definitions and execution. This semantic extension may significantly improve the management of smart spaces populated with numerous smart objects from mobile personal devices, as it facilitates the configuration of coherent ECA rules.
Resumo:
Cloud computing has seen an impressive growth in recent years, with virtualization technologies being massively adopted to create IaaS (Infrastructure as a Service) public and private solutions. Today, the interest is shifting towards the PaaS (Platform as a Service) model, which allows developers to abstract from the execution platform and focus only on the functionality. There are several public PaaS offerings available, but currently no private PaaS solution is ready for production environments. To fill this gap a new solution must be developed. In this paper we present a key element for enabling this model: a cloud repository based on the OSGi component model. The repository stores, manages, provisions and resolves the dependencies of PaaS software components and services. This repository can federate with other repositories located in the same or different clouds, both private and public. This way, dependencies can be fulfilled collaboratively, and new business models can be implemented.
Resumo:
Las últimas previsiones de mercado el cloud computing pronostican un crecimiento anual del 30%, ya que cada vez más personas adoptan la tecnología más avanzada para almacenar información en un espacio virtual. Sin embargo, el cloud computing no es sólo un sistema de almacenamiento de datos, sino que también se puede utilizar para ejecutar software y aplicaciones de forma remota, sin estar atado a un único ordenador. Para una pequeña empresa, la externalización de TI a la nube reduce la necesidad de contratar personas con habilidades especializadas y libera a los directores para que puedan concentrarse en el negocio. En el segundo capítulo analizamos el estado del arte del cloud computing, para lo cual en primer lugar definimos qué es cloud, así como cuáles son sus ventajas e inconvenientes. Presentamos los diferentes modelos de cloud computing, y cuáles son sus principales proveedores actualmente. Para finalizar esbozamos unas pinceladas del siempre complejo marco regulatorio del cloud computing en España. En el Capítulo 3 presentamos la situación de las pequeñas y medianas empresas dentro del ecosistema empresarial español, basándonos en los datos proporcionados por el Instituto Nacional de Estadística del año 2013. A continuación, en el Capítulo 4, analizamos la penetración del Cloud Computing en España, desde el punto de vista que tienen las pequeñas empresas de las tecnologías cloud, así como del uso que estas hacen del mismo. Para este capítulo hemos utilizado el informe realizado por Deloitte para el Ministerio de Industria, Energía y Turismo. En el capítulo 5 veremos un caso real de solución software as a service, desarrollado por mi empresa. Se trata de una aplicación de gestión de activos inmobiliarios, que enfocaremos hacia las pequeñas inmobiliarias. Para ello analizaremos la tipología de Pyme hacia la que queremos dirigir el producto viendo en detalle el sector de las actividades inmobiliarias, así como describiremos qué tipo de aplicación es y su funcionalidad (de modo muy resumido consiste en la gestión del ciclo de venta de todos los inmuebles de una agencia inmobiliaria, desde que el cliente solicita una visita, hasta que se lleva a cabo la firma de las escrituras). Posicionaremos el producto en precio y haremos una comparativa entre otras soluciones tanto cloud como on-premise para comparar su ventaja competitiva en precio. A continuación describiremos cómo pensamos hacer la comunicación del producto, mediante la publicación de la aplicación en el App Exchange de Salesforce, ferias inmobiliarias, etc y describiremos los servicios de valor añadido que ofrecemos. Por último estableceremos las previsiones económicas a tres años de las ventas del producto. Por último en el Capítulo 6 concluiremos el proyecto con una serie de reflexiones sobre los retos y las oportunidades a las que se enfrentan las Pymes actualmente, en lo que se refiere a la implantación de sistemas en la nube, y más concretamente los retos y oportunidades que pueden tener las Pymes el sector inmobiliario con las soluciones cloud.
Resumo:
With the advent of cloud computing model, distributed caches have become the cornerstone for building scalable applications. Popular systems like Facebook [1] or Twitter use Memcached [5], a highly scalable distributed object cache, to speed up applications by avoiding database accesses. Distributed object caches assign objects to cache instances based on a hashing function, and objects are not moved from a cache instance to another unless more instances are added to the cache and objects are redistributed. This may lead to situations where some cache instances are overloaded when some of the objects they store are frequently accessed, while other cache instances are less frequently used. In this paper we propose a multi-resource load balancing algorithm for distributed cache systems. The algorithm aims at balancing both CPU and Memory resources among cache instances by redistributing stored data. Considering the possible conflict of balancing multiple resources at the same time, we give CPU and Memory resources weighted priorities based on the runtime load distributions. A scarcer resource is given a higher weight than a less scarce resource when load balancing. The system imbalance degree is evaluated based on monitoring information, and the utility load of a node, a unit for resource consumption. Besides, since continuous rebalance of the system may affect the QoS of applications utilizing the cache system, our data selection policy ensures that each data migration minimizes the system imbalance degree and hence, the total reconfiguration cost can be minimized. An extensive simulation is conducted to compare our policy with other policies. Our policy shows a significant improvement in time efficiency and decrease in reconfiguration cost.
Resumo:
The emergence of cloud datacenters enhances the capability of online data storage. Since massive data is stored in datacenters, it is necessary to effectively locate and access interest data in such a distributed system. However, traditional search techniques only allow users to search images over exact-match keywords through a centralized index. These techniques cannot satisfy the requirements of content based image retrieval (CBIR). In this paper, we propose a scalable image retrieval framework which can efficiently support content similarity search and semantic search in the distributed environment. Its key idea is to integrate image feature vectors into distributed hash tables (DHTs) by exploiting the property of locality sensitive hashing (LSH). Thus, images with similar content are most likely gathered into the same node without the knowledge of any global information. For searching semantically close images, the relevance feedback is adopted in our system to overcome the gap between low-level features and high-level features. We show that our approach yields high recall rate with good load balance and only requires a few number of hops.
Resumo:
Reproducible research in scientic work ows is often addressed by tracking the provenance of the produced results. While this approach allows inspecting intermediate and nal results, improves understanding, and permits replaying a work ow execution, it does not ensure that the computational environment is available for subsequent executions to reproduce the experiment. In this work, we propose describing the resources involved in the execution of an experiment using a set of semantic vocabularies, so as to conserve the computational environment. We dene a process for documenting the work ow application, management system, and their dependencies based on 4 domain ontologies. We then conduct an experimental evaluation sing a real work ow application on an academic and a public Cloud platform. Results show that our approach can reproduce an equivalent execution environment of a predened virtual machine image on both computing platforms.
Resumo:
It is essential to remotely and continuously monitor the movements of individuals in many social areas, for example, taking care of aging people, physical therapy, athletic training etc. Many methods have been used, such as video record, motion analysis or sensor-based methods. Due to the limitations in remote communication, power consumption, portability and so on, most of them are not able to fulfill the requirements. The development of wearable technology and cloud computing provides a new efficient way to achieve this goal. This paper presents an intelligent human movement monitoring system based on a smartwatch, an Android smartphone and a distributed data management engine. This system includes advantages of wide adaptability, remote and long-term monitoring capacity, high portability and flexibility. The structure of the system and its principle are introduced. Four experiments are designed to prove the feasibility of the system. The results of the experiments demonstrate the system is able to detect different actions of individuals with adequate accuracy.