66 resultados para citation


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper introduces a novel technique for identifying logically related sections of the heap such as recursive data structures, objects that are part of the same multi-component structure, and related groups of objects stored in the same collection/array. When combined withthe lifetime properties of these structures, this information can be used to drive a range of program optimizations including pool allocation, object co-location, static deallocation, and region-based garbage collection. The technique outlined in this paper also improves the efficiency of the static analysis by providing a normal form for the abstract models (speeding the convergence of the static analysis). We focus on two techniques for grouping parts of the heap. The first is a technique for precisely identifying recursive data structures in object-oriented programs based on the types declared in the program. The second technique is a novel method for grouping objects that make up the same composite structure and that allows us to partition the objects stored in a collection/array into groups based on a similarity relation. We provide a parametric component in the similarity relation in order to support specific analysis applications (such as a numeric analysis which would need to partition the objects based on numeric properties of the fields). Using the Barnes-Hut benchmark from the JOlden suite we show how these grouping methods can be used to identify various types of logical structures allowing the application of many region-based program optimizations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Precise modeling of the program heap is fundamental for understanding the behavior of a program, and is thus of signiflcant interest for many optimization applications. One of the fundamental properties of the heap that can be used in a range of optimization techniques is the sharing relationships between the elements in an array or collection. If an analysis can determine that the memory locations pointed to by different entries of an array (or collection) are disjoint, then in many cases loops that traverse the array can be vectorized or transformed into a thread-parallel versión. This paper introduces several novel sharing properties over the concrete heap and corresponding abstractions to represent them. In conjunction with an existing shape analysis technique, these abstractions allow us to precisely resolve the sharing relations in a wide range of heap structures (arrays, collections, recursive data structures, composite heap structures) in a computationally efflcient manner. The effectiveness of the approach is evaluated on a set of challenge problems from the JOlden and SPECjvm98 suites. Sharing information obtained from the analysis is used to achieve substantial thread-level parallel speedups.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract machines provide a certain separation between platformdependent and platform-independent concerns in compilation. Many of the differences between architectures are encapsulated in the speciflc abstract machine implementation and the bytecode is left largely architecture independent. Taking advantage of this fact, we present a framework for estimating upper and lower bounds on the execution times of logic programs running on a bytecode-based abstract machine. Our approach includes a one-time, programindependent proflling stage which calculates constants or functions bounding the execution time of each abstract machine instruction. Then, a compile-time cost estimation phase, using the instruction timing information, infers expressions giving platform-dependent upper and lower bounds on actual execution time as functions of input data sizes for each program. Working at the abstract machine level makes it possible to take into account low-level issues in new architectures and platforms by just reexecuting the calibration stage instead of having to tailor the analysis for each architecture and platform. Applications of such predicted execution times include debugging/veriflcation of time properties, certiflcation of time properties in mobile code, granularity control in parallel/distributed computing, and resource-oriented specialization.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Memory analysis techniques have become sophisticated enough to model, with a high degree of accuracy, the manipulation of simple memory structures (finite structures, single/double linked lists and trees). However, modern programming languages provide extensive library support including a wide range of generic collection objects that make use of complex internal data structures. While these data structures ensure that the collections are efficient, often these representations cannot be effectively modeled by existing methods (either due to excessive analysis runtime or due to the inability to represent the required information). This paper presents a method to represent collections using an abstraction of their semantics. The construction of the abstract semantics for the collection objects is done in a manner that allows individual elements in the collections to be identified. Our construction also supports iterators over the collections and is able to model the position of the iterators with respect to the elements in the collection. By ordering the contents of the collection based on the iterator position, the model can represent a notion of progress when iteratively manipulating the contents of a collection. These features allow strong updates to the individual elements in the collection as well as strong updates over the collections themselves.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we study, through a concrete case, the feasibility of using a high-level, general-purpose logic language in the design and implementation of applications targeting wearable computers. The case study is a "sound spatializer" which, given real-time signáis for monaural audio and heading, generates stereo sound which appears to come from a position in space. The use of advanced compile-time transformations and optimizations made it possible to execute code written in a clear style without efñciency or architectural concerns on the target device, while meeting strict existing time and memory constraints. The final executable compares favorably with a similar implementation written in C. We believe that this case is representative of a wider class of common pervasive computing applications, and that the techniques we show here can be put to good use in a range of scenarios. This points to the possibility of applying high-level languages, with their associated flexibility, conciseness, ability to be automatically parallelized, sophisticated compile-time tools for analysis and verification, etc., to the embedded systems field without paying an unnecessary performance penalty.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study the múltiple specialization of logic programs based on abstract interpretation. This involves in general generating several versions of a program predícate for different uses of such predícate, making use of information obtained from global analysis performed by an abstract interpreter, and finally producing a new, "multiply specialized" program. While the topic of múltiple specialization of logic programs has received considerable theoretical attention, it has never been actually incorporated in a compiler and its effects quantified. We perform such a study in the context of a parallelizing compiler and show that it is indeed a relevant technique in practice. Also, we propose an implementation technique which has the same power as the strongest of the previously proposed techniques but requires little or no modification of an existing abstract interpreter.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Traditional logic programming languages, such as Prolog, use a fixed left-to-right atom scheduling rule. Recent logic programming languages, however, usually provide more flexible scheduling in which computation generally proceeds leftto- right but in which some calis are dynamically "delayed" until their arguments are sufRciently instantiated to allow the cali to run efficiently. Such dynamic scheduling has a significant cost. We give a framework for the global analysis of logic programming languages with dynamic scheduling and show that program analysis based on this framework supports optimizations which remove much of the overhead of dynamic scheduling.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

While logic programming languages offer a great deal of scope for parallelism, there is usually some overhead associated with the execution of goals in parallel because of the work involved in task creation and scheduling. In practice, therefore, the "granularity" of a goal, i.e. an estimate of the work available under it, should be taken into account when deciding whether or not to execute a goal concurrently as a sepárate task. This paper describes a method for estimating the granularity of a goal at compile time. The runtime overhead associated with our approach is usually quite small, and the performance improvements resulting from the incorporation of grainsize control can be quite good. This is shown by means of experimental results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This report addresses speculative parallelism (the assignment of spare processing resources to tasks which are not known to be strictly required for the successful completion of a computation) at the user and application level. At this level, the execution of a program is seen as a (dynamic) tree —a graph, in general. A solution for a problem is a traversal of this graph from the initial state to a node known to be the answer. Speculative parallelism then represents the assignment of resources to múltiple branches of this graph even if they are not positively known to be on the path to a solution. In highly non-deterministic programs the branching factor can be very high and a naive assignment will very soon use up all the resources. This report presents work assignment strategies other than the usual depth-first and breadth-first. Instead, best-first strategies are used. Since their definition is application-dependent, the application language contains primitives that allow the user (or application programmer) to a) indícate when intelligent OR-parallelism should be used; b) provide the functions that define "best," and c) indícate when to use them. An abstract architecture enables those primitives to perform the search in a "speculative" way, using several processors, synchronizing them, killing the siblings of the path leading to the answer, etc. The user is freed from worrying about these interactions. Several search strategies are proposed and their implementation issues are addressed. "Armageddon," a global pruning method, is introduced, together with both a software and a hardware implementation for it. The concepts exposed are applicable to áreas of Artificial Intelligence such as extensive expert systems, planning, game playing, and in general to large search problems. The proposed strategies, although showing promise, have not been evaluated by simulation or experimentation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Proof-Carrying Code (PCC) is a general approach to mobile code safety in which the code supplier augments the program with a certifícate (or proof). The intended benefit is that the program consumer can locally validate the certifícate w.r.t. the "untrusted" program by means of a certifícate checker—a process which should be much simpler, eíñcient, and automatic than generating the original proof. Abstraction Carrying Code (ACC) is an enabling technology for PCC in which an abstract model of the program plays the role of certifícate. The generation of the certifícate, Le., the abstraction, is automatically carried out by an abstract interpretation-based analysis engine, which is parametric w.r.t. different abstract domains. While the analyzer on the producer side typically has to compute a semantic fixpoint in a complex, iterative process, on the receiver it is only necessary to check that the certifícate is indeed a fixpoint of the abstract semantics equations representing the program. This is done in a single pass in a much more efficient process. ACC addresses the fundamental issues in PCC and opens the door to the applicability of the large body of frameworks and domains based on abstract interpretation as enabling technology for PCC. We present an overview of ACC and we describe in a tutorial fashion an application to the problem of resource-aware security in mobile code. Essentially the information computed by a cost analyzer is used to genérate cost certificates which attest a safe and efficient use of a mobile code. A receiving side can then reject code which brings cost certificates (which it cannot validate or) which have too large cost requirements in terms of computing resources (in time and/or space) and accept mobile code which meets the established requirements.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of program specialization is to optimize programs by exploiting certain knowledge about the context in which the program will execute. There exist many program manipulation techniques which allow specializing the program in different ways. Among them, one of the best known techniques is partial evaluation, often referred to simply as program specialization, which optimizes programs by specializing them for (partially) known input data. In this work we describe abstract specialization, a technique whose main features are: (1) specialization is performed with respect to "abstract" valúes rather than "concrete" ones, and (2) abstract interpretation rather than standard interpretation of the program is used in order to propágate information about execution states. The concept of abstract specialization is at the heart of the specialization system in CiaoPP, the Ciao system preprocessor. In this paper we present a unifying view of the different specialization techniques used in CiaoPP and discuss their potential applications by means of examples. The applications discussed include program parallelization, optimization of dynamic scheduling (concurreney), and integration of partial evaluation techniques.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An abstract is not available.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A Kuhnian approach to research assessment requires us to consider that the important scientific breakthroughs that drive scientific progress are infrequent and that the progress of science does not depend on normal research. Consequently, indicators of research performance based on the total number of papers do not accurately measure scientific progress. Similarly, those universities with the best reputations in terms of scientific progress differ widely from other universities in terms of the scale of investments made in research and in the higher concentrations of outstanding scientists present, but less so in terms of the total number of papers or citations. This study argues that indicators for the 1% high-citation tail of the citation distribution reveal the contribution of universities to the progress of science and provide quantifiable justification for the large investments in research made by elite research universities. In this tail, which follows a power low, the number of the less frequent and highly cited important breakthroughs can be predicted from the frequencies of papers in the upper part of the tail. This study quantifies the false impression of excellence produced by multinational papers, and by other types of papers that do not contribute to the progress of science. Many of these papers are concentrated in and dominate lists of highly cited papers, especially in lower-ranked universities. The h-index obscures the differences between higher- and lower-ranked universities because the proportion of h-core papers in the 1% high-citation tail is not proportional to the value of the h-index.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The use of barometric altimetry is to some extent a limiting factor on safety, predictability and efficiency of aircraft operations, and reduces the potential of the trajectory based operations capabilities. However, geometric altimetry could be used to improve all of these aspects. Nowadays aircraft altitude is estimated by applying the International Standard Atmosphere which differs from real altitude. At different temperatures for an assigned barometric altitude, aerodynamic forces are different and this has a direct relationship with time, fuel consumption and range of the flight. The study explores the feasibility of using sensors providing geometric reference altitude, in particular, to supply capabilities for the optimization of vertical profiles and also, their impact on the vertical Air Traffic Management separation assurance processes. One of the aims of the thesis is to assess if geometric altitude fulfils the aeronautical requirements through existing sensors. Also the thesis will elaborate on the advantages of geometric altitude over the barometric altitude in terms of efficiency for vertical navigation. The evidence that geometric altitude is the best choice to improve the efficiency in vertical profile and aircraft capacity by reducing vertical uncertainties will also be shown. In this paper, an atmospheric study is presented, as well as the impact of temperature deviation from International Standard Atmosphere model is analyzed in order to obtain relationship between geometric and barometric altitude. Furthermore, an aircraft model to study aircraft vertical profile is provided to analyse trajectories based on geometric altitudes.