33 resultados para casting aluminium alloys molybdenum heat treatment mechanical properties microstructure high temperature exposition
Resumo:
This study includes an analysis of the applicability of current models used for estimating the mechanical properties of conventional concrete to self-compacting concrete. The mechanical properties evaluated are: modulus of elasticity, tensile strength, and modulus of rupture. An extensive database which included the dosifications and the mechanical properties of 627 mixtures from 138 different references, was used. The models considered are: ACI, EC-2, NZS 3101:2006 (New Zealand code) and the CSA A23.3-04 (Canadian code). The precision in estimating the modulus of elasticity and tensile strength is acceptable for all models; however, all models are less precise in estimating the modulus of rupture.
Resumo:
Las gemas se evalúan mediante la norma de clasificación visual (UNE 56544), pero su aplicación en estructuras existentes y grandes escuadrías resulta poco eficaz y conduce a estimaciones demasiado conservadoras. Este trabajo analiza la influencia de las gemas comparando la resistencia de piezas con gemas y piezas correctamente escuadradas. Se han analizado 218 piezas de pino silvestre con dimensiones nominales 150 x 200 x 4.200 mm, de las que 102 presentaban una gema completa a lo largo de toda su longitud y el resto estaban correctamente escuadradas. En las piezas con gema se ha medido la altura de la sección cada 30 cm (altura en cada cara y altura máxima). Para determinar la resistencia se han ensayado todas las piezas de acuerdo a la norma EN 408. Se ha comparado la resistencia obtenida para las piezas con gema, diferenciando si la gema se encuentra en el borde comprimido o en el borde traccionado, con las piezas escuadradas. Puede concluirse que la presencia de gemas disminuye la resistencia excepto si la gema se encuentra en el borde traccionado, en cuyo caso los resultados obtenidos han sido similares a los de las piezas escuadradas. The wanes on structural timber are evaluated according to the visual grading standard (UNE 56544), but its application on existing structures and large cross sections is ineffective and leads to conservative estimations. This paper analyzes the influence of the wanes by comparing the resistance of pieces with wanes and square pieces. 218 pieces of Scotch pine with nominal dimensions 150 x 200 x 4200 mm have been analyzed, 102 of them had a complete wane along its length and the rest were properly squared. The height of the cross section was measured every 30 cm (the height on each side and the maximum height) for the pieces with wane. The bending strength of all the pieces was obtained according to the EN 408 standard. The bending strength of the pieces with wane has been compared with the strength of the squared pieces, taking into account if the wane is positioned on the compressed edge or on the tensioned edge. It can be concluded that the bending strength of the pieces with wanes is lower than the one of squared pieces, except if the wanes are on the tensioned edge of the beam.
Resumo:
The effect of three different aging methods (immersion in hot water, freeze–thaw cycles and wet–dry cycles) on the mechanical properties of GRC were studied and compared. Test results showed that immersion in hot water may be an unreliable method for modified GRC formulations, with it being in probability a very harmful procedure. A new aging method, mixing freeze–thaw cycles and wet–dry cycles, seems to be the most accurate simulation of weather conditions that produce a noticeable change in GRC mechanical properties. Future work should be carried out to find a correlation between real weather and the proposed aging method.
Resumo:
Nowadays, the electronic industry demands small and complex parts as a consequence of the miniaturization of electronic devices. Powder injection moulding (PIM) is an emerging technique for the manufacturing of magnetic ceramics. In this paper, we analyze the sintering process, between 900 °C and 1300 °C, of Ni–Zn ferrites prepared by PIM. In particular, the densification behaviour, microstructure and mechanical properties of samples with toroidal and bar geometry were analyzed at different temperatures. Additionally, the magnetic behaviour (complex permeability and magnetic losses factor) of these compacts was compared with that of samples prepared by conventional powder compaction. Finally, the mechanical behaviour (elastic modulus, flexure strength and fracture toughness) was analyzed as a function of the powder loading of feedstock. The final microstructure of prepared samples was correlated with the macroscopic behaviour. A good agreement was established between the densities and population of defects found in the materials depending on the sintering conditions. In general, the final mechanical and magnetic properties of PIM samples were enhanced relative those obtained by uniaxial compaction.
Resumo:
Discrete element method (DEM) is a numerical technique widely used for simulating the mechanical behavior of granular materials involved in many food and agricultural industry processes. Additionally, this technique is also a powerful tool to understand many complex phenomena related to the mechanics of granular materials. However, to make use of the potential of this technique it is necessary to develop DEM models capable of representing accurately the reality. For that, among some other questions, it is essential that the values of the microscopic material properties used to define the numerical model are accurately determined.
Resumo:
El principal objetivo de este estudio es evaluar la influencia de las fendas de secado en las propiedades mecánicas de vigas de madera. Para esto, se utilizan 40 vigas de Pino silvestre (Pinus sylvestris L) de 4200 mm de longitud y 150x200 mm de sección que fueron ensayadas según norma EN 408. Las fendas se registran detalladamente atendiendo a su longitud y posición en cada cara de la viga, y midiendo el espesor y la profundidad cada 100mm a lo largo de la viga. Solo el 10% de la muestra es rechazada por las fendas, según los criterios establecidos por la norma española de clasificación visual UNE 56544. Para evaluar la influencia de las fendas en las propiedades mecánicas, se usan tres parámetros globales basados en el área, el volumen o la profundad de la fenda, y dos locales basados en la profundidad máxima y la profundidad en la zona de rotura. Además se determina la densidad de las piezas. Estos parámetros se comparan con las propiedades mecánicas (tensión de rotura, módulo de elasticidad y energía de rotura) y se encuentra escasa relación entre ellos. Las mejores correlaciones se encuentran entre los parámetros relacionados con la profundidad de las fendas, tanto con el módulo de elasticidad como con la tensión de rotura. The aim of this study is the evaluation of the influence of drying fissures on the mechanical properties of timber beams. For that purpose, 40 sawn timber pieces of Scots pine (Pinus sylvestris L.) with 150x200 mm in cross-section and 4200 mm in length have been tested according to EN 408, obtaining MOR and MOE. The fissures were registered in detail measuring their length and position in each face of the beam, and the thickness and depth every 100 mm in length. Only 10 % of the pieces were rejected because fissures, according to UNE 56544 Spanish visual grading standard. To evaluate the influence of fissures in mechanical properties three global parameters: Fissures Area Ratio or ratio between the area occupied by fissures and the total area in the neutral axis plane of the beam; Fissures Volume Ratio or ratio between volume of fissures and the total volume of the beam; Fissures Average Depth and two local parameters were used: Fissures Maximum Depth in the beam, and Fissures Depth in the broken zone of the beam. Also the density of the beams was registered. These parameters were compared with mechanical properties (tensile strength, elasticity modulus, and rupture energy) and the relationship between them had not been founded. The best relationship was founded between the elasticity modulus y the tensile strength with the parameters which included the depth of the fissures.
Resumo:
The presented study is related to the EU 7 th Framework Programme CODICE (COmputationally Driven design of Innovative CEment-based materials). The main aim of the project is the development of a multi-scale model for the computer based simulation of mechanical and durability performance of cementitious materials. This paper reports results of micro/nano scale characterisation and mechanical property mapping of cementitious skeletons formed by the cement hydration at different ages. Using the statistical nanoindentation and micro-mechanical property mapping technique, intrinsic properties of different hydrate phases, and also the possible interaction (or overlapping) of different phases (e.g. calcium-silcate-hydrates) has been studied. Results of the mapping and statistical indentation testing appear to suggest the possible existence of more hydrate phases than the commonly reported LD and HD C-S-H and CH phases
Resumo:
EWT back contact solar cells are manufactured from very thin silicon wafers. These wafers are drilled by means of a laser process creating a matrix of tiny holes with a density of approximately 125 holes per square centimeter. Their influence in the stiffness and mechanical strength has been studied. To this end, both wafers with and without holes have been tested with the ring on ring test. Numerical simulations of the tests have been carried out through the Finite Element Method taking into account the non-linearities present in the tests. It's shown that one may use coarse meshes without holes to simulate the test and after that sub models are used for the estimation of the stress concentration around the holes.
Resumo:
Nowadays, one of the main objectives that affects the development of any new product is the respect for the environment. Until the late 80's, the development and manufacture of the most of the product were aimed to achieve maximum quality in time and costs with environmental issues relegated to secondary importance. On the other hand, in the 90's, the pressure from factors such as markets, financial and legislative factors, led to environmental considerations being taken into account. In this context, the current aeronautical industry strategies are based on the search for economic, environmental and energy efficiency considerations for all the processes involved in the aircraft manufacturing.
Resumo:
The objective of this study is to analyze the applicability of current models used for estimating the mechanical properties of conventional concrete to self-consolidating concrete (SCC). The mechanical properties evaluated are modulus of elasticity, tensile strength,and modulus of rupture. As part of the study, it was necessary to build an extensive database that included the proportions and mechanical properties of 627 mixtures from 138 different references. The same models that are currently used for calculating the mechanical properties of conventional concrete were applied to SCC to evaluate their applicability to this type of concrete. The models considered are the ACI 318, ACI 363R, and EC2. These are the most commonly used models worldwide. In the first part of the study, the overall behavior and adaptability of the different models to SCC is evaluated. The specific characterization parameters for each concrete mixture are used to calculate the various mechanical properties applying the different estimation models. The second part of the analysis consists of comparing the experimental results of all the mixtures included in the database with the estimated results to evaluate the applicability of these models to SCC. Various statistical procedures, such as regression analysis and residual analysis, are used to compare the predicted and measured properties. It terms of general applicability, the evaluated models are suitable for estimating the modulus of elasticity, tensile strength, and modulus of rupture of SCC. These models have a rather low sensitivity, however, and adjust well only to mean values. This is because the models use the compressive strength as the main variable to characterize the concrete and do not consider other variables that affect these properties.
Resumo:
A novel methodology based on instrumented indentation is developed to determine the mechanical properties of amorphous materials which present cohesive-frictional behaviour. The approach is based on the concept of a universal hardness equation, which results from the assumption of a characteristic indentation pressure proportional to the hardness. The actual universal hardness equation is obtained from a detailed finite element analysis of the process of sharp indentation for a very wide range of material properties, and the inverse problem (i.e. how to extract the elastic modulus, the compressive yield strength and the friction angle) from instrumented indentation is solved. The applicability and limitations of the novel approach are highlighted. Finally, the model is validated against experimental data in metallic and ceramic glasses as well as polymers, covering a wide range of amorphous materials in terms of elastic modulus, yield strength and friction angle.
Resumo:
The method reported in the literature to calculate the stress–strain curve of nuclear fuel cladding from ring tensile test is revisited in this paper and a new alternative is presented. In the former method, two universal curves are introduced under the assumption of small strain. In this paper it is shown that these curves are not universal, but material-dependent if geometric nonlinearity is taken into account. The new method is valid beyond small strains, takes geometric nonlinearity into consideration and does not need universal curves. The stress–strain curves in the hoop direction are determined by combining numerical calculations with experimental results in a convergent loop. To this end, ring tensile tests were performed in unirradiated hydrogen-charged samples. The agreement among the simulations and the experimental results is excellent for the range of concentrations tested (up to 2000 wppm hydrogen). The calculated stress–strain curves show that the mechanical properties do not depend strongly on the hydrogen concentration, and that no noticeable strain hardening occurs. However, ductility decreases with the hydrogen concentration, especially beyond 500 wppm hydrogen. The fractographic results indicate that as-received samples fail in a ductile fashion, whereas quasicleavage is bserved in the hydrogen-charged samples.
Resumo:
A novel methodology based on instrumented indentation was developed to characterize the mechanical properties of amorphous materials. The approach is based on the concept of a universal postulate that assumes the existence of a characteristic indentation pressure proportional to the hardness. This hypothesis was numerically validated. This method overcomes the limitation of the conventional indentation models (pile-up effects and pressure sensitivity materials).
Resumo:
On the efforts for rationalizing the production of peanuts in Spain, one of the objectives was to obtain a well adapted variety, suitable for mechanization. We tried to get information on the characteristics that would condition the suitability of a variety to mechanized production, principally mechanical harvesting. All the characters studied would then be taken into account in a breeding program.
Resumo:
El objetivo del estudio es determinar el efecto de tratamiento de la madera de Pinus sylvestris con sustancias protectoras en las propiedades mecánicas. Para ello se utilizan 40 muestras de madera libre de defectos de Pinus sylvestris L. tratándose con protectores orgánicos (Vacsol Azure WR 2601) 50 con protectores hidrosolubles (Tanalith E 3492) y 40 muestras de control sin tratamiento. Se evaluó la resistencia mecánica a la flexión estática, módulo de elasticidad y la fuerza de compresión paralela a la fibra fueron comparados con madera no tratada. El análisis de regresión entre la penetración y la fuerza de compresión paralela se realizó con las muestras tratadas con conservante a base de agua. Resultados principales: Los resultados indican que la madera tratada (con cualquiera de los productos) presenta un aumento estadísticamente significativo de la resistencia mecánica en todas las tres características mecánicas. Los resultados obtenidos difieren de estudios anteriores llevada a cabo por otros autores. No hubo correlación entre la resistencia a la compresión en paralelo y el grado de impregnación de la madera con base de agua de cobre azoles. La explicación más probable para estos resultados se refiere a cambios en la presión durante el tratamiento. El uso de muestras de control no tratadas en lugar de las muestras tratadas sólo con agua es más probable para producir resultados significativos en los estudios de resistencia mecánica . La investigación pone de relieve que la madera tratada presenta un aumento estadísticamente significativo en el Modulo de Elasticidad, módulo de rotura a la flexión estática y resistencia a la compresión paralela. No hubo correlación entre la resistencia a la compresión en paralelo y el grado de impregnación con conservante hidrosoluble.