42 resultados para broadband antenna
Resumo:
Accurate characterization of the radio channel in tunnels is of great importance for new signaling and train control communications systems. To model this environment, measurements have been taken at 2.4 GHz in a real environment in Madrid subway. The measurements were carried out with four base station transmitters installed in a 2-km tunnel and using a mobile receiver installed on a standard train. First, with an optimum antenna configuration, all the propagation characteristics of a complex subway environment, including near shadowing, path loss,shadow fading, fast fading, level crossing rate (LCR), and average fade duration (AFD), have been measured and computed. Thereafter, comparisons of propagation characteristics in a double-track tunnel (9.8-m width) and a single-track tunnel (4.8-m width) have been made. Finally, all the measurement results have been shown in a complete table for accurate statistical modeling.
Resumo:
A broadband primary standard for thermal noise measurements is presented and its thermal and electromagnetic behavior is analyzed by means of analytical and numerical simulation techniques. It consists of a broadband termination connected to a 3.5mm coaxial airline partially immersed in liquid Nitrogen. The main innovative part of the device is the thermal bead between inner and outer conductors, designed for obtaining a proper thermal contact and to keep low both its contribution to the total thermal noise and its reflectivity. A sensitivity analysis is realized in order to fix the manufacturing tolerances for a proper performance in the range 10MHz¿26.5GHz.
Resumo:
In this work, a dual circular polarized steering antenna for satellite communications in X band is presented. The antenna consists of printed elements grouped in an array. This terminal works in a frequency band from 7.25 GHz up to 8.4 GHz (15% of bandwidth), where both bands, reception (RX) and transmission (TX) are included simultaneously and Left Handed Circular Polarization (LHCP) and Right Handed Circular Polarization (RHCP) are interchangeable. The antenna is compact, narrow bandwidth and reaches a gain of 16 dBi. It has the capability to steer in elevation to 45±, 75±, 105± and 135± electronically with a Butler matrix and 360± in azimuth with a motorized junction.
Resumo:
A broadband primary standard for thermal noise measurements is presented and its thermal and electromagnetic behaviour is analysed by means of a novel hybrid analytical?numerical simulation methodology. The standard consists of a broadband termination connected to a 3.5mm coaxial airline partially immersed in liquid nitrogen and is designed in order to obtain a low reflectivity and a low uncertainty in the noise temperature. A detailed sensitivity analysis is made in order to highlight the critical characteristics that mostly affect the uncertainty in the noise temperature, and also to determine the manufacturing and operation tolerances for a proper performance in the range 10MHz to 26.5 GHz. Aspects such as the thermal bead design, the level of liquid nitrogen or the uncertainties associated with the temperatures, the physical properties of the materials in the standard and the simulation techniques are discussed.
Resumo:
Two different methods to reduce the noise power in the far-field pattern of an antenna as measured in cylindrical near-field (CNF) are proposed. Both methods are based on the same principle: the data recorded in the CNF measurement, assumed to be corrupted by white Gaussian and space-stationary noise, are transformed into a new domain where it is possible to filter out a portion of noise. Those filtered data are then used to calculate a far-field pattern with less noise power than that one obtained from the measured data without applying any filtering. Statistical analyses are carried out to deduce the expressions of the signal-to-noise ratio improvement achieved with each method. Although the idea of the two alternatives is the same, there are important differences between them. The first one applies a modal filtering, requires an oversampling and improves the far-field pattern in all directions. The second method employs a spatial filtering on the antenna plane, does not require oversampling and the far-field pattern is only improved in the forward hemisphere. Several examples are presented using both simulated and measured near-field data to verify the effectiveness of the methods.
Resumo:
An analytical method for evaluating the uncertainty of the performance of active antenna arrays in the whole spatial spectrum is presented. Since array processing algorithms based on spatial reference are widely used to track moving targets, it is essential to be aware of the impact of the uncertainty sources on the antenna response. Furthermore, the estimation of the direction of arrival (DOA) depends on the array uncertainty. The aim of the uncertainties analysis is to provide an exhaustive characterization of the behavior of the active antenna array associated with its main uncertainty sources. The result of this analysis helps to select the proper calibration technique to be implemented. An illustrative example for a triangular antenna array used for satellite tracking is presented showing the suitability of the proposed method to carry out an efficient characterization of an active antenna array.
Resumo:
In large antenna arrays with a large number of antenna elements, the required number of measurements for the characterization of the antenna array is very demanding in cost and time. This letter presents a new offline calibration process for active antenna arrays that reduces the number of measurements by subarray-level characterization. This letter embraces measurements, characterization, and calibration as a global procedure assessing about the most adequate calibration technique and computing of compensation matrices. The procedure has been fully validated with measurements of a 45-element triangular panel array designed for Low Earth Orbit (LEO) satellite tracking that compensates the degradation due to gain and phase imbalances and mutual coupling.
Resumo:
CubeSat platforms have become a de facto standard for universities willing to initiate space-technology activities with students. These small satellite platforms ease the implementation of hands-on education projects and opening the apertures of new research areas. Moreover, due to the limited volume (a 10 cm cube) and power (1 W), the application of imaginative solutions is mandatory. This leads to new innovation processes in the course of CubeSat projects. In this paper, we present a hands-on education project the aim of which is the specification, design, building and measurement of an antenna for communication between nanosatellites and, in particular, CubeSats. The project lies within the framework of ETSIT-UPM innovative education activities in the area of space technology, where students play a leading role in real engineering projects.
Resumo:
This paper presents a study of three possible solutions that can be taken into account to control the phase shift between elements in an antenna array. Because commercial digital phase shifters have become a strategic element by U.S. Government, these elements have increased their price. For this reason, it is necessary to adopt some solutions that allow us to deal with the design and construction of antenna arrays.
Resumo:
This paper presents a simple gravity evaluation model for large reflector antennas and the experimental example for a case study of one uplink array of 4x35-m antennas at X and Ka band. This model can be used to evaluate the gain reduction as a function of the maximum gravity distortion, and also to specify this at system designer level. The case study consists of one array of 35-m antennas for deep space missions. Main issues due to the gravity effect have been explored with Monte Carlo based simulation analysis.
Resumo:
This paper introduces novel calibration processes applied to antenna arrays with new architectures and technologies designed to improve the performance of traditional earth stations for satellite communications due to the increasing requirement of data capacity during last decades. Besides, the Radiation Group from the Technical University of Madrid has been working on the development of new antenna arrays based on novel architecture and technologies along many projects as a solution for the ground segment in the early future. Nowadays, the calibration process is an interesting and cutting edge research field in a period of expansion with a lot of work to do for calibration in transmission and also for reception of these novel antennas under development.
Resumo:
When we look at the history of electricity and electromagnetism in Spain we discover that the most important Spanish researchers are generally out of the official institutions or stable research groups until the 20th century [1] [2]. In the 20th century most of the scientific research is done in stable research institutions and universities and the most important electromagnetism research centres in Spain are located in the Faculty of Physics of the most important universities, the National Scientific Research Council (CSIC) and the School for Telecommunication Engineering created in 1923. But the greatest impulse of research in the antenna and radiowave propagation field is done after 1960 reaching the first national URSI conference in 1980. After that year, the relation between groups and the number of research groups is continuously growing and the relation to industry is also increasing. When Spain joins the European research organizations (COST, ERC...) and the European Union in 1985 the research support experience a fast growing and the participation in the European research structures. In the antenna design field, there exist some specializations although most of the groups have dome specific projects in almost all the antenna analysis and design fields. Here, we have selected the most important and characteristic area related to each of the research groups and institutions. The easiest way to classify the research work in antennas is the selection between antenna analysis, design and measurement. After that the selected frequency bands technology, the type of antennas and the related circuits can be a good criterion to describe the variety of research work and specialization between groups.
Resumo:
Three different methods to reduce the noise power in the far-field pattern of an antenna when it is measured in a cylindrical near field system are presented and compared. The first one is based on a modal filtering while the other two are based on spatial filtering, either on an antenna plane or either on a cylinder of smaller radius. Simulated and measured results will be presented.
Resumo:
A 300 GHz radar imaging system is presented, including descriptions of the radar sensor and antenna subsystems. The antenna consists of a Bifocal Ellipsoidal Gregorian Reflector whose beam is scanned by a combination of the rotation and vertical tilting of a flat small secondary mirror. A prototype is being mounted and its characterization will be presented.
Resumo:
In this paper a low cost man-pack antenna for satellite communications at X band is presented. The antenna has dual circular polarization in Tx and Rx.