19 resultados para arduino


Relevância:

10.00% 10.00%

Publicador:

Resumo:

El presente trabajo trata sobre la implementación de un prototipo de pulsioxímetro, es decir, un dispositivo capaz de medir la saturación de oxígeno en sangre y el ritmo cardiaco. Aprovechando una serie de propiedades ópticas se aplicará una técnica no invasiva basada en la absorción diferencial de la luz emitida por dos LEDs y, posteriormente, transmitida por los componentes del tejido humano. La caracterización de las constantes vitales del paciente será posible gracias a la comparación de las respuestas correspondientes a las dos longitudes de onda empleadas realizada por un fotodetector. Además de estos elementos, el sistema estará formado por un circuito analógico de acondicionamiento de la señal, un microcontrolador Arduino y un módulo de visualización LCD. El documento presentará la motivación que ha impulsado la elaboración de este proyecto, así como los conceptos fisiológicos y técnicos sobre los que se asienta el sistema y las fases de desarrollo que ha conllevado su implementación en un modelo real. Asimismo, se mencionarán las limitaciones del pulsioxímetro, los resultados de las mediciones experimentales y las posibles mejoras que podrían realizarse orientadas a la continuidad del diseño. El aliciente principal del proyecto está relacionado con su coste de fabricación. El objetivo es diseñar un dispositivo asequible que garantice una precisión de cálculo similar al de otros sistemas presentes en el mercado actual. Por ello, se realizará una comparativa sobre la fiabilidad de las lecturas del dispositivo frente a las especificaciones de dichos productos, con precios más elevados y por tanto menos accesibles para los países en vías de desarrollo

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La Arquitectura de la Red de las Cosas (IoT) hace referencia a una red de objetos cotidianos interconectados digitalmente. Gracias a IoT, no sólo podemos almacenar, analizar e intercambiar información y datos con dichos objetos, sino que además ellos pueden tener la capacidad de interactuar entre ellos de forma autónoma. Para ellos, los objetos cotidianos disponen de actuadores y sensores que permiten modificar su comportamiento y conocer su estado y propiedades, respectivamente. La gestión de IoT combina todas las funcionalidades necesarias para coordinar un sistema con una Arquitectura de la Red de las Cosas. Una buena gestión del sistema puede reducir costes, mejorar la asistencia a problemas de uso inesperado, corregir fallos y permitir la escalabilidad del sistema permitiéndole la incorporación de nuevos módulos y funcionalidades. En este Proyecto Fin de Grado se realizará primero un análisis de los aspectos de IoT relacionados con la gestión de dispositivos integrados en la Arquitectura de la Red de las Cosas. Después se procederá a realizar la especificación y el diseño de plataforma de gestión. Y finalmente se desarrollarán un caso de uso que permita validar algunos elementos de la plataforma diseñada. Se realizarán distintas pruebas para comprobar una correcta gestión de los dispositivos como el correcto funcionamiento del diseño previamente establecido, por medio, entre otras, de las siguientes operaciones: listar los elementos conectados, posibilidad de obtener y/o modificar dichos elementos (su configuración y su estado) o presentar informes y comprobar el estado en el que se encuentran los dispositivos: operativos o no operativos. De tal forma, en esta memoria se plasma como se ha desarrollado la gestión de dispositivos integrados en un sistema con Arquitectura de la Red de las Cosas utilizando tanto plataformas Intel Galileo como Arduino. ABSTRACT. The Architecture of the Internet of Things (IoT) refers to a network of digitally interconnected everyday objects. With IoT, not only we can store, analyze and exchange information and data with objects, but they can also autonomously interact among them. To accomplish that, the everyday objects are made of actuators and sensors that let us act on their behavior and know their state and properties, respectively. Management of IoT combines all the functionalities needed for coordinating a system with an Architecture of the Internet of Things. A good management system can reduce faults, improve assistance to reduce unexpected problems, correct errors and allow the scalability of the system, allowing the addition of new modules and functionalities. In this Degree Final Project, an analysis about aspects of IoT related to the management of devices integrated into the Architecture of the Internet of things is carried out first. Then, the specification and the design of the management platform is made. Finally, a use case will be developed to validate some elements of the designed platform. Several tests will be run to check the correct management of the devices such as the proper functioning of the design previously established, requesting, among others, the following set of operations: list the connected elements, possibility to obtain or modify these elements (their configuration and their state) or reporting and checking which devices are operating or non-operating. So, in this memory it is explained how it has been carried out the management of devices integrated in a system with an Architecture of the Internet of Things (IoT), based on the Intel Galileo and Arduino platforms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

El proyecto trata del desarrollo de un software para realizar el control de la medida de la distribución de intensidad luminosa en luminarias LED. En el trascurso del proyecto se expondrán fundamentos teóricos sobre fotometría básica, de los cuales se extraen las condiciones básicas para realizar dicha medida. Además se realiza una breve descripción del hardware utilizado en el desarrollo de la máquina, el cual se basa en una placa de desarrollo Arduino Mega 2560, que, gracias al paquete de Labview “LIFA” (Labview Interface For Arduino”), será posible utilizarla como tarjeta de adquisición de datos mediante la cual poder manejar tanto sensores como actuadores, para las tareas de control. El instrumento de medida utilizado en este proyecto es el BTS256 de la casa GigaHerzt-Optik, del cual se dispone de un kit de desarrollo tanto en lenguaje C++ como en Labview, haciendo posible programar aplicaciones basadas en este software para realizar cualquier tipo de adaptación a las necesidades del proyecto. El software está desarrollado en la plataforma Labview 2013, esto es gracias a que se dispone del kit de desarrollo del instrumento de medida, y del paquete LIFA. El objetivo global del proyecto es realizar la caracterización de luminarias LED, de forma que se obtengan medidas suficientes de la distribución de intensidad luminosa. Los datos se recogerán en un archivo fotométrico específico, siguiendo la normativa IESNA 2002 sobre formato de archivos fotométricos, que posteriormente será utilizado en la simulación y estudio de instalaciones reales de la luminaria. El sistema propuesto en este proyecto, es un sistema basado en fotometría tipo B, utilizando coordenadas VH, desarrollando un algoritmo de medida que la luminaria describa un ángulo de 180º en ambos ejes, con una resolución de 5º para el eje Vertical y 22.5º para el eje Horizontal, almacenando los datos en un array que será escrito en el formato exigido por la normativa. Una vez obtenidos los datos con el instrumento desarrollado, el fichero generado por la medida, es simulado con el software DIALux, obteniendo unas medidas de iluminación en la simulación que serán comparadas con las medidas reales, intentando reproducir en la simulación las condiciones reales de medida. ABSTRACT. The project involves the development of software for controlling the measurement of light intensity distribution in LEDs. In the course of the project theoretical foundations on basic photometry, of which the basic conditions for such action are extracted will be presented. Besides a brief description of the hardware used in the development of the machine, which is based on a Mega Arduino plate 2560 is made, that through the package Labview "LIFA" (Interface For Arduino Labview "), it is possible to use as data acquisition card by which to handle both sensors and actuators for control tasks. The instrument used in this project is the BTS256 of GigaHerzt-Optik house, which is available a development kit in both C ++ language as LabView, making it possible to program based on this software applications for any kind of adaptation to project needs. The software is developed in Labview 2013 platform, this is thanks to the availability of the SDK of the measuring instrument and the LIFA package. The overall objective of the project is the characterization of LED lights, so that sufficient measures the light intensity distribution are obtained. Data will be collected on a specific photometric file, following the rules IESNA 2002 on photometric format files, which will then be used in the simulation and study of actual installations of the luminaire. The proposed in this project is a system based on photometry type B system using VH coordinates, developing an algorithm as the fixture describe an angle of 180 ° in both axes, with a resolution of 5 ° to the vertical axis and 22.5º for the Horizontal axis, storing data in an array to be written in the format required by the regulations. After obtaining the data with the instrument developed, the file generated by the measure, is simulated with DIALux software, obtaining measures of lighting in the simulation will be compared with the actual measurements, trying to play in the simulation the actual measurement conditions .

Relevância:

10.00% 10.00%

Publicador:

Resumo:

El sistema energético mundial actual es insostenible a largo plazo debido a la fuerte presencia de los combustibles fósiles. Es por ello que se está llevando a cabo gradualmente un proceso de cambio de modelo energético, teniendo como base la incorporación de las energías renovables. Dentro de este tipo de energías la energía solar, tanto fotovoltaica como de concentración, es una de las tecnologías con más crecimiento y potencial en el futuro. Las mejoras en materiales y dispositivos en energía solar permiten la reducción de costes y la mejora de la eficiencia causando un aumento en la competitividad de esta tecnología. El objetivo de este proyecto es el de diseñar y construir un sistema de orientación solar electrónico. Para ello será necesario la utilización de sensores de luminosidad, un controlador y un motor eléctrico. El sistema detectará el punto de mayor intensidad lumínica y orientará la superficie de una placa hacia este punto. El proyecto se desarrollará empleando la plataforma Arduino, una serie de micro procesadores de libre acceso destinados al uso en aplicaciones de electrónica general en el ámbito educativo y de bajo coste. Todo el sistema estará dirigido por un programa que controlará las lecturas de luz y el movimiento del motor.