20 resultados para accelerated fermentation
Resumo:
The effect of type of fiber, site of fermetation, method for quantifying insoluble and soluble dietary fiber, and their correction for intestinal mucin on fiber digestibility were examined in rabbits. Three diets differing in soluble fiber were formulated (8.5% soluble fiber, on DM basis, in the low soluble fiber [LSF] diet; 10.2% in the medium soluble fiber [MSF] diet; and 14.5% in the high soluble fiber [HSF] diet). They were obtained by replacing half of the dehydrated alfalfa in the MSF diet with a mixture of beet and apple pulp (HSF diet) or with a mix of oat hulls and soybean protein (LSF diet). Thirty rabbits with ileal T-cannulas were used to determine ileal and fecal digestibility. Cecal digestibility was determined by difference between fecal and ileal digestibility. Insoluble fiber was measured as NDF, insoluble dietary fiber (IDF), and in vitro insoluble fiber, whereas soluble fiber was calculated as the difference between total dietary fiber (TDF) and NDF (TDF_NDF), IDF (TDF-IDF), and in vitro insoluble fiber (TDF-in vitro insoluble fiber). The intestinal mucin content was used to correct the TDF and soluble fiber digestibility. Ileal and fecal concentration of mucin increased from the LSF to the HSF diet group (P < 0.01). Once corrected for intestinal mucin, ileal and fecal digestibility of TDF and soluble fiber increased whereas cecal digestibility decreased (P < 0.01). Ileal digestibility of TDF increased from the LSF to the HSF diet group (12.0 vs. 28.1%; P < 0.01), with no difference in the cecum (26.4%), resulting in a higher fecal digestibility from the LSF to the HSF diet group (P < 0.01). Ileal digestibility of insoluble fiber increased from the LSF to the HSF diet group (11.3 vs. 21.0%; P < 0.01), with no difference in the cecum (13.9%) and no effect of fiber method, resulting in a higher fecal digestibility for rabbits fed the HSF diet compared with the MSF and LSF diets groups (P < 0.01).Fecal digestibility of NDF was higher compared with IDF or in vitro insoluble fiber (P < 0.01). Ileal soluble fiber digestibility was higher for the HSF than for the LSF diet group (43.6 vs. 14.5%; P < 0.01) and fiber method did not affect it. Cecal soluble fiber digestibility decreased from the LSF to the HSF diet group (72.1 vs. 49.2%; P < 0.05). The lowest cecal and fecal soluble fiber digestibility was measured using TDF-NDF (P < 0.01). In conclusion, a correction for intestinal mucin is necessary for ileal TDF and soluble fiber digestibility whereas the selection of the fiber method has a minor relevance. The inclusion of sugar beet and apple pulp increased the amount of TDF fermented in the small intestine.
Resumo:
The effects of three treatments of fibrolytic enzymes (cellulase from Trichoderma longibrachiatum (CEL), xylanase from rumen micro-organisms (XYL) and a 1:1 mixture of CEL and XYL (MIX) on the in vitro fermentation of two samples of Pennisetum clandestinum (P1 and P2), two samples of Dichanthium aristatum (D1 and D2) and one sample of each Acacia decurrens and Acacia mangium (A1 and A2) were investigated. The first experiment compared the effects of two methods of applying the enzymes to forages, either at the time of incubation or 24 h before, on the in vitro gas production. In general, the 24 h pre-treatment resulted in higher values of gas production rate, and this application method was chosen for a second study investigating the effects of enzymes on chemical composition and in vitro fermentation of forages. The pre-treatment with CEL for 24 h reduced (p < 0.05) the content of neutral detergent fibre (NDF) of P1, P2, D1 and D2, and that of MIX reduced the NDF content of P1 and D1, but XYL had no effect on any forage. The CEL treatment increased (p < 0.05) total volatile fatty acid (VFA) production for all forages (ranging from 8.6% to 22.7%), but in general, no effects of MIX and XYL were observed. For both P. clandestinum samples, CEL treatment reduced (p < 0.05) the molar proportion of acetate and increased (p < 0.05) that of butyrate, but only subtle changes in VFA profile were observed for the rest of forages. Under the conditions of the present experiment, the treatment of tropical forages with CEL stimulated their in vitro ruminal fermentation, but XYL did not produce any positive effect. These results showed clearly that effectiveness of enzymes varied with the incubated forage and further study is warranted to investigate specific, optimal enzyme-substrate combinations.
Resumo:
Two in vitro experiments were conducted to analyse the effects of replacing dietary barley grain with wastes of tomato and cucumber fruits and a 1 : 1 tomato : cucumber mixture on rumen fermentation characteristics and microbial abundance. The control (CON) substrate contained 250 g/kg of barley grain on a dry matter (DM) basis, and another 15 substrates were formulated by replacing 50, 100, 150, 200 or 250 g of barley grain/kg with the same amount (DM basis) of tomato or cucumber fruits or 1 : 1 tomato : cucumber mixture. In Expt 1, all substrates were incubated in batch cultures with rumen micro-organisms from goats for 24 h. Increasing amounts of tomato, cucumber and the mixture of both fruits in the substrate increased final pH and gas production, without changes in final ammonia-nitrogen (NH3-N) concentrations, substrate degradability and total volatile fatty acid (VFA) production, indicating that there were no detrimental effects of any waste fruits on rumen fermentation. Therefore, in Expt 2 the substrates including 250 g of waste fruits (T250, C250 and M250 for tomato, cucumber and the mixture of both fruits, respectively) and the CON substrate were incubated in single-flow continuous-culture fermenters for 8 days. Total VFA production did not differ among substrates, but there were differences in VFA profile. Molar proportions of propionate, isobutyrate and isovalerate were lower and acetate : propionate ratio was greater for T250 compared with CON substrate. Fermentation of substrates containing cucumber (C250 and M250) resulted in lower proportions of acetate, isobutyrate and isovalerate and acetate : propionate ratio, but greater butyrate proportions than the CON substrate. Carbohydrate degradability and microbial N synthesis tended to be lower for substrates containing cucumber than for the CON substrate, but there were no differences between CON and T250 substrates. Abundance of total bacteria, Fibrobacter succinogenes and Ruminococcus flavefaciens, fungi, methanogenic archaea and protozoa were similar in fermenters fed T250 and CON substrates, but fermenters fed C250 and M250 substrates had lower abundances of R. flavefaciens, fungi and protozoa than those fed the CON substrate. Results indicated that tomato fruits could replace dietary barley grain up to 250 g/kg of substrate DM without noticeable effects on rumen fermentation and microbial populations, but the inclusion of cucumber fruits at 250 g/kg of substrate DM negatively affected some microbial populations as it tended to reduce microbial N synthesis and changed the VFA profile. More studies are needed to identify the dietary inclusion level of cucumber which produces no detrimental effects on rumen fermentation and microbial growth.
Resumo:
The objective of the current study was to assess how closely batch cultures (BC) of rumen microorganisms can mimic the dietary differences in fermentation characteristics found in the rumen, and to analyse changes in bacterial diversity over the in vitro incubation period. Four ruminally and duodenally cannulated sheep were fed four diets having forage : concentrate ratios (FCR) of 70 : 30 or 30 : 70, with either alfalfa hay or grass hay as forage. Rumen fluid from each sheep was used to inoculate BC containing the same diet fed to the donor sheep, and the main rumen fermentation parameters were determined after 24 h of incubation. There were differences between BC and sheep in the magnitude of most measured parameters, but BC detected differences among diets due to forage type similar to those found in sheep. In contrast, BC did not reproduce the dietary differences due to FCR found in sheep for pH, degradability of neutral detergent fibre and total volatile fatty acid (VFA) concentrations. There were differences between systems in the magnitude of most determined parameters and BC showed higher pH values and NH3–N concentrations, but lower fibre degradability and VFA and lactate concentrations compared with sheep. There were significant relationships between in vivo and in vitro values for molar proportions of acetate, propionate and butyrate, and the acetate : propionate ratio. The automated ribosomal intergenic spacer analysis (ARISA) of 16S ribosomal deoxyribonucleic acid showed that FCR had no effect on bacterial diversity either in the sheep rumen fluid used as inoculum (IN) or in BC samples. In contrast, bacterial diversity was greater with alfalfa hay diets than those with grass hay in the IN, but was unaffected by forage type in the BC. Similarity index between the bacterial communities in the inocula and those in the BC ranged from 67·2 to 74·7%, and was unaffected by diet characteristics. Bacterial diversity was lower in BC than in the inocula with 14 peaks out of a total of 181 detected in the ARISA electropherograms never appearing in BC samples, which suggests that incubation conditions in the BC may have caused a selection of some bacterial strains. However, each BC sample showed the highest similarity index with its corresponding rumen IN, which highlights the importance of using rumen fluid from donors fed a diet similar to that being incubated in BC when conducting in vitro experiments.