35 resultados para Web Applications Engineering


Relevância:

80.00% 80.00%

Publicador:

Resumo:

El mundo de la web admite actualmente los productos desarrollados tanto por desarrolladores profesionales como por usuarios finales con un conocimiento más limitado. A pesar de la diferencia que se puede suponer de calidad entre los productos de ambos, las dos soluciones pueden ser reconocidas y empleadas en una aplicación. En la Web 2.0, este comportamiento se observa en el desarrollo de componentes web. Lo que se persigue en el trabajo es desarrollar un modelo de persistencia que, apoyado por un lado servidor y por uno cliente, recoja las métricas de calidad de los componentes cuando los usuarios interaccionan con ellos. A partir de estas métricas, es posible mejorar la calidad de estos componentes. La forma en la que se van a recoger las métricas es a través de PicBit, la aplicación desarrollada para que los usuarios puedan interconectar diferentes componentes entre ellos sin restricciones, de forma que tras interactuar con ellos puedan expresar su grado de satisfacción, que se recoge para la evaluación de la calidad. Se definen también unas métricas intrínsecas al componente, no determinadas por el usuario y que sirven como referencia de la evaluación. Cuando se tienen tanto las métricas intrínsecas como procedentes del usuario, se realiza una correlación entre ellas que permite analizar las posibles desviaciones entre ellas y determinar la calidad propia del componente. Las conclusiones que se pueden obtener del trabajo es que cuando los usuarios pueden realizar pruebas de usabilidad de forma libre, sin restricciones, es mayor la posibilidad de obtener resultados favorables porque estos resultados muestran cómo usará un usuario final la aplicación. Este método de trabajo se ve favorecido por el número de herramientas que se pueden utilizar hoy para monitorizar el flujo de usuario en el servicio.---ABSTRACT---Nowadays, the web world deals with products developed both by professional developers and by end-users with some limited knowledge. Although the difference between both can be important in quality terms, both are accepted and included in web applications. In web 2.0, this behavior can be recognized in the web components development. The goal pursued in the work presented is to create a persistent model that, supported by an end and a back side, will pick the quality measures of the components when the users interact with them. These measures are the starting point for improving the components. The way in which the measures are going to be picked is through PicBit, the application we have developed in order to allow the users playing with the components without restrictions or rules, so after the interaction they can give their satisfaction mark with the application. This will be the value used to evaluate the quality. Some own measures are also defined, which does not depend on the user and which will be used as a reference point of the evaluation. When the measures from users and own ones are got, their correlation is analyzed to study the differences between them and to establish the quality of the component. The conclusion that can be gained from the project is the importance of giving freedom for users when doing usability tests because it increases the chance to get positive results, in the way the users execute the operations they want with the application. This method is fortunate for having such a number of tools to monitor the user flow when using the service.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Durante el siglo XXI hemos sido testigos de cambios con una gran trascendencia en el campo de las tecnologías tanto a nivel de hardware como software, aunque uno de los más notables ha sido el cambio del paradigma de la distribución del software, donde la instalación de herramientas de escritorio queda relegada a un segundo plano y toman fuerza las aplicaciones que consumen servicios web o que, simplemente, son aplicaciones web, que no requieren de un proceso de instalación y siempre que tengamos una conexión a internet activa podremos acceder a nuestra aplicación y datos, sin importar desde donde nos conectemos. Gracias a este cambio, últimamente han proliferado distintas tecnologías para la creación de aplicaciones web, entre estas encontramos los componentes web basados en tecnología Polymer como herramienta para el desarrollo de aplicaciones modulares y componentes reutilizables en distintos sitios web, modificando y añadiendo funcionalidad a las etiquetas de HTML, de esta manera una vez desarrollado un componente, volver a utilizarlo es realizar un trabajo de unos cuantos segundo añadiendo la etiqueta necesaria en nuestro código HTML, esta ventaja es la principal característica de Polymer. En paralelo al desarrollo de tecnologías web, y gracias a su masificación, se han generado herramientas y frameworks a través de los cuales se pueden desarrollar aplicaciones para dispositivos móviles mediante tecnologías web, esto beneficia directamente a los ecosistemas de desarrolladores, herramientas, frameworks y aplicaciones ya que los hace más amplios y accesibles a todo aquel que sea capaz de programar una aplicación web basada en HTML, CSS y Javascript. El objetivo de este trabajo es generar un canal de movilidad definiendo una metodología eficaz para portar las ventajas de los componentes web de Polymer a entornos móviles, conservando su capacidad de ser reutilizados de manera sencilla y sin perder, dentro de lo posible, la usabilidad de los mismos teniendo en cuenta las particularidades de los dispositivos móviles, esto se realizará mediante pruebas de usabilidad para posteriormente validar la metodología generada aplicándola a un caso real.---ABSTRACT---During 21st century we have witness the important changes in technologies field, involving both hardware and software level, but one of the most relevant ones has been the software distribution paradigm change, where desktop tools has lost their importance to benefit web services or just web applications, among which the web components are included. Web components are based on Polymer technology as its main tool for developing modular applications and reusable components in different web sites, adding and modifying functionality to HTML tags. So, when a components is developed, reusing it is possible just adding its correspondant tag inour HTML code. This is the main Polymer feature. As web technologies grow, different tools and frameworks has been created. They can be used to develop applications for web devices though web technologies, which is a benefit for developer, tools, frameworks and applications ecosystems, in such a way this new tools make them wider and more accessible for every one able to develop web applications with HTML, CSS and Javascript languages. The goal of this work is to generate a mobility channel defining an efficient methodology to carry the Polymer web components advantages to mobile environments, keeping their features of being reused in an easy way and without losing, when possible, their usability being aware the special features of mobile devices. This work will be evaluated through usability tests to validate then the generated methodology applying it to a real case.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

El propósito de este proyecto es el desarrollo de un sistema de aprovisionamiento electrónico para gestionar los pedidos de las tiendas al almacén mediante mensajería SOAP. El sistema consiste en dos aplicaciones Web, la primera instalada en el almacén y otra instalada en las tiendas asociadas a dicho almacén. Ambas aplicaciones se desarrollarán en Java y JSP utilizando el Framework Spring e Hibernate para la persistencia en base de datos. La mensajería entre las aplicaciones se realizará con mensajes SOAP enviados a servicios Web publicados en ambas aplicaciones. En la primera parte del trabajo se realizará una explicación del Framework de Spring e Hibernate focalizando sobre todo en los módulos utilizados en el trabajo. También se realizará una explicación acerca de la mensajería SOAP y los servicios Web. En la segunda parte se realizarán las dos aplicaciones del sistema. La aplicación de gestión de la tienda permitirá a los usuarios realizar pedidos al almacén, recibir las mercancías y consultar el histórico de pedidos realizados. Además tendrá publicados dos servicios web para recibir las expediciones de los pedidos y los productos nuevos o modificados en el almacén. La aplicación de gestión del almacén permitirá a los usuarios crear / modificar productos, expedir los pedidos recibidos de las tiendas y consultar el histórico de pedidos recibidos. Además tendrá publicados dos servicios web para recibir los pedidos y las recepciones de mercancías desde las tiendas. En esta aplicación también se implementará una tarea programada que se ejecutará cada tres minutos y que sincronizará con las tiendas los productos nuevos o modificados en el almacén mediante mensajes SOAP. SUMMARY The aim of this project is the development of an e-procurement system to manage orders from shops to the storehouse using SOAP messaging. The system consists of two Web applications, the first one is installed in the storehouse and the other is installed in the shops associated to that storehouse. Both applications will be developed in Java and JSP using the Spring Framework and Hibernate for database persistence. The messaging between applications is performed with SOAP messages sent to Web services published in both applications. In the first part of the project an explanation of the Spring Framework and Hibernate will be performed, especially focusing on modules used in the project. An explanation about SOAP messaging and Web services will be carried out too. In the second part of the project the two system applications will be performed. The store management application will allow the users to make purchase orders to the storehouse, receive items and consult the order history carried out. In addition it will have two Web Services published in order to receive the shipping orders and the new or modified products in the storehouse. The management application of the storehouse will allow the users to create and modify products, send the orders received from stores and consult the orders history received. Besides, it will have two Web Services published to receive the orders and receipts from stores. A scheduled task run every three minutes will also be performed in this application. It will synchronize the new or modified products with stores using SOAP messaging.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Enabling real end-user programming development is the next logical stage in the evolution of Internetwide service-based applications. Even so, the vision of end users programming their own web-based solutions has not yet materialized. This will continue to be so unless both industry and the research community rise to the ambitious challenge of devising an end-to-end compositional model for developing a new age of end-user web application development tools. This paper describes a new composition model designed to empower programming-illiterate end users to create and share their own off-the-shelf rich Internet applications in a fully visual fashion. This paper presents the main insights and outcomes of our research and development efforts as part of a number of successful European Union research projects. A framework implementing this model was developed as part of the European Seventh Framework Programme FAST Project and the Spanish EzWeb Project and allowed us to validate the rationale behind our approach.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In the beginning of the 90s, ontology development was similar to an art: ontology developers did not have clear guidelines on how to build ontologies but only some design criteria to be followed. Work on principles, methods and methodologies, together with supporting technologies and languages, made ontology development become an engineering discipline, the so-called Ontology Engineering. Ontology Engineering refers to the set of activities that concern the ontology development process and the ontology life cycle, the methods and methodologies for building ontologies, and the tool suites and languages that support them. Thanks to the work done in the Ontology Engineering field, the development of ontologies within and between teams has increased and improved, as well as the possibility of reusing ontologies in other developments and in final applications. Currently, ontologies are widely used in (a) Knowledge Engineering, Artificial Intelligence and Computer Science, (b) applications related to knowledge management, natural language processing, e-commerce, intelligent information integration, information retrieval, database design and integration, bio-informatics, education, and (c) the Semantic Web, the Semantic Grid, and the Linked Data initiative. In this paper, we provide an overview of Ontology Engineering, mentioning the most outstanding and used methodologies, languages, and tools for building ontologies. In addition, we include some words on how all these elements can be used in the Linked Data initiative.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A high productivity rate in Engineering is related to an efficient management of the flow of the large quantities of information and associated decision making activities that are consubstantial to the Engineering processes both in design and production contexts. Dealing with such problems from an integrated point of view and mimicking real scenarios is not given much attention in Engineering degrees. In the context of Engineering Education, there are a number of courses designed for developing specific competencies, as required by the academic curricula, but not that many in which integration competencies are the main target. In this paper, a course devoted to that aim is discussed. The course is taught in a Marine Engineering degree but the philosophy could be used in any Engineering field. All the lessons are given in a computer room in which every student can use each all the treated software applications. The first part of the course is dedicated to Project Management: the students acquire skills in defining, using Ms-PROJECT, the work breakdown structure (WBS), and the organization breakdown structure (OBS) in Engineering projects, through a series of examples of increasing complexity, ending up with the case of vessel construction. The second part of the course is dedicated to the use of a database manager, Ms-ACCESS, for managing production related information. A series of increasing complexity examples is treated ending up with the management of the pipe database of a real vessel. This database consists of a few thousand of pipes, for which a production timing frame is defined, which connects this part of the course with the first one. Finally, the third part of the course is devoted to the work with FORAN, an Engineering Production package of widespread use in the shipbuilding industry. With this package, the frames and plates where all the outfitting will be carried out are defined through cooperative work by the studens, working simultaneously in the same 3D model. In the paper, specific details about the learning process are given. Surveys have been posed to the students in order to get feed-back from their experience as well as to assess their satisfaction with the learning process. Results from these surveys are discussed in the paper

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The European Higher Education Area (EHEA) has leaded to a change in the way the subjects are taught. One of the more important aspects of the EHEA is to support the autonomous study of the students. Taking into account this new approach, the virtual laboratory of the subject Mechanisms of the Aeronautical studies at the Technical University of Madrid is being migrated to an on-line scheme. This virtual laboratory consist on two practices: the design of cam-follower mechanisms and the design of trains of gears. Both practices are software applications that, in the current situation, need to be installed on each computer and the students carry out the practice at the computer classroom of the school under the supervision of a teacher. During this year the design of cam-follower mechanisms practice has been moved to a web application using Java and the Google Development Toolkit. In this practice the students has to design and study the running of a cam to perform a specific displacement diagram with a selected follower taking into account that the mechanism must be able to work properly at high speed regime. The practice has maintained its objectives in the new platform but to take advantage of the new methodology and try to avoid the inconveniences that the previous version had shown. Once the new practice has been ready, a pilot study has been carried out to compare both approaches: on-line and in-lab. This paper shows the adaptation of the cam and follower practice to an on-line methodology. Both practices are described and the changes that has been done to the initial one are shown. They are compared and the weak and strong points of each one are analyzed. Finally we explain the pilot study carried out, the students impression and the results obtained.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The European Higher Education Area (EHEA) has leaded to a change in the way the subjects are taught. One of the more important aspects of the EHEA is to support the autonomous study of the students. Taking into account this new approach, the virtual laboratory of the subject Mechanisms of the Aeronautical studies at the Technical University of Madrid is being migrated to an on-line scheme. This virtual laboratory consist on two practices: the design of cam-follower mechanisms and the design of trains of gears. Both practices are software applications that, in the current situation, need to be installed on each computer and the students carry out the practice at the computer classroom of the school under the supervision of a teacher. During this year the design of cam-follower mechanisms practice has been moved to a web application using Java and the Google Development Toolkit. In this practice the students has to design and study the running of a cam to perform a specific displacement diagram with a selected follower taking into account that the mechanism must be able to work properly at high speed regime. The practice has maintained its objectives in the new platform but to take advantage of the new methodology and try to avoid the inconveniences that the previous version had shown. Once the new practice has been ready, a pilot study has been carried out to compare both approaches: on-line and in-lab. This paper shows the adaptation of the cam and follower practice to an on-line methodology. Both practices are described and the changes that has been done to the initial one are shown. They are compared and the weak and strong points of each one are analyzed. Finally we explain the pilot study carried out, the students impression and the results obtained.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

OntoTag - A Linguistic and Ontological Annotation Model Suitable for the Semantic Web 1. INTRODUCTION. LINGUISTIC TOOLS AND ANNOTATIONS: THEIR LIGHTS AND SHADOWS Computational Linguistics is already a consolidated research area. It builds upon the results of other two major ones, namely Linguistics and Computer Science and Engineering, and it aims at developing computational models of human language (or natural language, as it is termed in this area). Possibly, its most well-known applications are the different tools developed so far for processing human language, such as machine translation systems and speech recognizers or dictation programs. These tools for processing human language are commonly referred to as linguistic tools. Apart from the examples mentioned above, there are also other types of linguistic tools that perhaps are not so well-known, but on which most of the other applications of Computational Linguistics are built. These other types of linguistic tools comprise POS taggers, natural language parsers and semantic taggers, amongst others. All of them can be termed linguistic annotation tools. Linguistic annotation tools are important assets. In fact, POS and semantic taggers (and, to a lesser extent, also natural language parsers) have become critical resources for the computer applications that process natural language. Hence, any computer application that has to analyse a text automatically and ‘intelligently’ will include at least a module for POS tagging. The more an application needs to ‘understand’ the meaning of the text it processes, the more linguistic tools and/or modules it will incorporate and integrate. However, linguistic annotation tools have still some limitations, which can be summarised as follows: 1. Normally, they perform annotations only at a certain linguistic level (that is, Morphology, Syntax, Semantics, etc.). 2. They usually introduce a certain rate of errors and ambiguities when tagging. This error rate ranges from 10 percent up to 50 percent of the units annotated for unrestricted, general texts. 3. Their annotations are most frequently formulated in terms of an annotation schema designed and implemented ad hoc. A priori, it seems that the interoperation and the integration of several linguistic tools into an appropriate software architecture could most likely solve the limitations stated in (1). Besides, integrating several linguistic annotation tools and making them interoperate could also minimise the limitation stated in (2). Nevertheless, in the latter case, all these tools should produce annotations for a common level, which would have to be combined in order to correct their corresponding errors and inaccuracies. Yet, the limitation stated in (3) prevents both types of integration and interoperation from being easily achieved. In addition, most high-level annotation tools rely on other lower-level annotation tools and their outputs to generate their own ones. For example, sense-tagging tools (operating at the semantic level) often use POS taggers (operating at a lower level, i.e., the morphosyntactic) to identify the grammatical category of the word or lexical unit they are annotating. Accordingly, if a faulty or inaccurate low-level annotation tool is to be used by other higher-level one in its process, the errors and inaccuracies of the former should be minimised in advance. Otherwise, these errors and inaccuracies would be transferred to (and even magnified in) the annotations of the high-level annotation tool. Therefore, it would be quite useful to find a way to (i) correct or, at least, reduce the errors and the inaccuracies of lower-level linguistic tools; (ii) unify the annotation schemas of different linguistic annotation tools or, more generally speaking, make these tools (as well as their annotations) interoperate. Clearly, solving (i) and (ii) should ease the automatic annotation of web pages by means of linguistic tools, and their transformation into Semantic Web pages (Berners-Lee, Hendler and Lassila, 2001). Yet, as stated above, (ii) is a type of interoperability problem. There again, ontologies (Gruber, 1993; Borst, 1997) have been successfully applied thus far to solve several interoperability problems. Hence, ontologies should help solve also the problems and limitations of linguistic annotation tools aforementioned. Thus, to summarise, the main aim of the present work was to combine somehow these separated approaches, mechanisms and tools for annotation from Linguistics and Ontological Engineering (and the Semantic Web) in a sort of hybrid (linguistic and ontological) annotation model, suitable for both areas. This hybrid (semantic) annotation model should (a) benefit from the advances, models, techniques, mechanisms and tools of these two areas; (b) minimise (and even solve, when possible) some of the problems found in each of them; and (c) be suitable for the Semantic Web. The concrete goals that helped attain this aim are presented in the following section. 2. GOALS OF THE PRESENT WORK As mentioned above, the main goal of this work was to specify a hybrid (that is, linguistically-motivated and ontology-based) model of annotation suitable for the Semantic Web (i.e. it had to produce a semantic annotation of web page contents). This entailed that the tags included in the annotations of the model had to (1) represent linguistic concepts (or linguistic categories, as they are termed in ISO/DCR (2008)), in order for this model to be linguistically-motivated; (2) be ontological terms (i.e., use an ontological vocabulary), in order for the model to be ontology-based; and (3) be structured (linked) as a collection of ontology-based triples, as in the usual Semantic Web languages (namely RDF(S) and OWL), in order for the model to be considered suitable for the Semantic Web. Besides, to be useful for the Semantic Web, this model should provide a way to automate the annotation of web pages. As for the present work, this requirement involved reusing the linguistic annotation tools purchased by the OEG research group (http://www.oeg-upm.net), but solving beforehand (or, at least, minimising) some of their limitations. Therefore, this model had to minimise these limitations by means of the integration of several linguistic annotation tools into a common architecture. Since this integration required the interoperation of tools and their annotations, ontologies were proposed as the main technological component to make them effectively interoperate. From the very beginning, it seemed that the formalisation of the elements and the knowledge underlying linguistic annotations within an appropriate set of ontologies would be a great step forward towards the formulation of such a model (henceforth referred to as OntoTag). Obviously, first, to combine the results of the linguistic annotation tools that operated at the same level, their annotation schemas had to be unified (or, preferably, standardised) in advance. This entailed the unification (id. standardisation) of their tags (both their representation and their meaning), and their format or syntax. Second, to merge the results of the linguistic annotation tools operating at different levels, their respective annotation schemas had to be (a) made interoperable and (b) integrated. And third, in order for the resulting annotations to suit the Semantic Web, they had to be specified by means of an ontology-based vocabulary, and structured by means of ontology-based triples, as hinted above. Therefore, a new annotation scheme had to be devised, based both on ontologies and on this type of triples, which allowed for the combination and the integration of the annotations of any set of linguistic annotation tools. This annotation scheme was considered a fundamental part of the model proposed here, and its development was, accordingly, another major objective of the present work. All these goals, aims and objectives could be re-stated more clearly as follows: Goal 1: Development of a set of ontologies for the formalisation of the linguistic knowledge relating linguistic annotation. Sub-goal 1.1: Ontological formalisation of the EAGLES (1996a; 1996b) de facto standards for morphosyntactic and syntactic annotation, in a way that helps respect the triple structure recommended for annotations in these works (which is isomorphic to the triple structures used in the context of the Semantic Web). Sub-goal 1.2: Incorporation into this preliminary ontological formalisation of other existing standards and standard proposals relating the levels mentioned above, such as those currently under development within ISO/TC 37 (the ISO Technical Committee dealing with Terminology, which deals also with linguistic resources and annotations). Sub-goal 1.3: Generalisation and extension of the recommendations in EAGLES (1996a; 1996b) and ISO/TC 37 to the semantic level, for which no ISO/TC 37 standards have been developed yet. Sub-goal 1.4: Ontological formalisation of the generalisations and/or extensions obtained in the previous sub-goal as generalisations and/or extensions of the corresponding ontology (or ontologies). Sub-goal 1.5: Ontological formalisation of the knowledge required to link, combine and unite the knowledge represented in the previously developed ontology (or ontologies). Goal 2: Development of OntoTag’s annotation scheme, a standard-based abstract scheme for the hybrid (linguistically-motivated and ontological-based) annotation of texts. Sub-goal 2.1: Development of the standard-based morphosyntactic annotation level of OntoTag’s scheme. This level should include, and possibly extend, the recommendations of EAGLES (1996a) and also the recommendations included in the ISO/MAF (2008) standard draft. Sub-goal 2.2: Development of the standard-based syntactic annotation level of the hybrid abstract scheme. This level should include, and possibly extend, the recommendations of EAGLES (1996b) and the ISO/SynAF (2010) standard draft. Sub-goal 2.3: Development of the standard-based semantic annotation level of OntoTag’s (abstract) scheme. Sub-goal 2.4: Development of the mechanisms for a convenient integration of the three annotation levels already mentioned. These mechanisms should take into account the recommendations included in the ISO/LAF (2009) standard draft. Goal 3: Design of OntoTag’s (abstract) annotation architecture, an abstract architecture for the hybrid (semantic) annotation of texts (i) that facilitates the integration and interoperation of different linguistic annotation tools, and (ii) whose results comply with OntoTag’s annotation scheme. Sub-goal 3.1: Specification of the decanting processes that allow for the classification and separation, according to their corresponding levels, of the results of the linguistic tools annotating at several different levels. Sub-goal 3.2: Specification of the standardisation processes that allow (a) complying with the standardisation requirements of OntoTag’s annotation scheme, as well as (b) combining the results of those linguistic tools that share some level of annotation. Sub-goal 3.3: Specification of the merging processes that allow for the combination of the output annotations and the interoperation of those linguistic tools that share some level of annotation. Sub-goal 3.4: Specification of the merge processes that allow for the integration of the results and the interoperation of those tools performing their annotations at different levels. Goal 4: Generation of OntoTagger’s schema, a concrete instance of OntoTag’s abstract scheme for a concrete set of linguistic annotations. These linguistic annotations result from the tools and the resources available in the research group, namely • Bitext’s DataLexica (http://www.bitext.com/EN/datalexica.asp), • LACELL’s (POS) tagger (http://www.um.es/grupos/grupo-lacell/quees.php), • Connexor’s FDG (http://www.connexor.eu/technology/machinese/glossary/fdg/), and • EuroWordNet (Vossen et al., 1998). This schema should help evaluate OntoTag’s underlying hypotheses, stated below. Consequently, it should implement, at least, those levels of the abstract scheme dealing with the annotations of the set of tools considered in this implementation. This includes the morphosyntactic, the syntactic and the semantic levels. Goal 5: Implementation of OntoTagger’s configuration, a concrete instance of OntoTag’s abstract architecture for this set of linguistic tools and annotations. This configuration (1) had to use the schema generated in the previous goal; and (2) should help support or refute the hypotheses of this work as well (see the next section). Sub-goal 5.1: Implementation of the decanting processes that facilitate the classification and separation of the results of those linguistic resources that provide annotations at several different levels (on the one hand, LACELL’s tagger operates at the morphosyntactic level and, minimally, also at the semantic level; on the other hand, FDG operates at the morphosyntactic and the syntactic levels and, minimally, at the semantic level as well). Sub-goal 5.2: Implementation of the standardisation processes that allow (i) specifying the results of those linguistic tools that share some level of annotation according to the requirements of OntoTagger’s schema, as well as (ii) combining these shared level results. In particular, all the tools selected perform morphosyntactic annotations and they had to be conveniently combined by means of these processes. Sub-goal 5.3: Implementation of the merging processes that allow for the combination (and possibly the improvement) of the annotations and the interoperation of the tools that share some level of annotation (in particular, those relating the morphosyntactic level, as in the previous sub-goal). Sub-goal 5.4: Implementation of the merging processes that allow for the integration of the different standardised and combined annotations aforementioned, relating all the levels considered. Sub-goal 5.5: Improvement of the semantic level of this configuration by adding a named entity recognition, (sub-)classification and annotation subsystem, which also uses the named entities annotated to populate a domain ontology, in order to provide a concrete application of the present work in the two areas involved (the Semantic Web and Corpus Linguistics). 3. MAIN RESULTS: ASSESSMENT OF ONTOTAG’S UNDERLYING HYPOTHESES The model developed in the present thesis tries to shed some light on (i) whether linguistic annotation tools can effectively interoperate; (ii) whether their results can be combined and integrated; and, if they can, (iii) how they can, respectively, interoperate and be combined and integrated. Accordingly, several hypotheses had to be supported (or rejected) by the development of the OntoTag model and OntoTagger (its implementation). The hypotheses underlying OntoTag are surveyed below. Only one of the hypotheses (H.6) was rejected; the other five could be confirmed. H.1 The annotations of different levels (or layers) can be integrated into a sort of overall, comprehensive, multilayer and multilevel annotation, so that their elements can complement and refer to each other. • CONFIRMED by the development of: o OntoTag’s annotation scheme, o OntoTag’s annotation architecture, o OntoTagger’s (XML, RDF, OWL) annotation schemas, o OntoTagger’s configuration. H.2 Tool-dependent annotations can be mapped onto a sort of tool-independent annotations and, thus, can be standardised. • CONFIRMED by means of the standardisation phase incorporated into OntoTag and OntoTagger for the annotations yielded by the tools. H.3 Standardisation should ease: H.3.1: The interoperation of linguistic tools. H.3.2: The comparison, combination (at the same level and layer) and integration (at different levels or layers) of annotations. • H.3 was CONFIRMED by means of the development of OntoTagger’s ontology-based configuration: o Interoperation, comparison, combination and integration of the annotations of three different linguistic tools (Connexor’s FDG, Bitext’s DataLexica and LACELL’s tagger); o Integration of EuroWordNet-based, domain-ontology-based and named entity annotations at the semantic level. o Integration of morphosyntactic, syntactic and semantic annotations. H.4 Ontologies and Semantic Web technologies (can) play a crucial role in the standardisation of linguistic annotations, by providing consensual vocabularies and standardised formats for annotation (e.g., RDF triples). • CONFIRMED by means of the development of OntoTagger’s RDF-triple-based annotation schemas. H.5 The rate of errors introduced by a linguistic tool at a given level, when annotating, can be reduced automatically by contrasting and combining its results with the ones coming from other tools, operating at the same level. However, these other tools might be built following a different technological (stochastic vs. rule-based, for example) or theoretical (dependency vs. HPS-grammar-based, for instance) approach. • CONFIRMED by the results yielded by the evaluation of OntoTagger. H.6 Each linguistic level can be managed and annotated independently. • REJECTED: OntoTagger’s experiments and the dependencies observed among the morphosyntactic annotations, and between them and the syntactic annotations. In fact, Hypothesis H.6 was already rejected when OntoTag’s ontologies were developed. We observed then that several linguistic units stand on an interface between levels, belonging thereby to both of them (such as morphosyntactic units, which belong to both the morphological level and the syntactic level). Therefore, the annotations of these levels overlap and cannot be handled independently when merged into a unique multileveled annotation. 4. OTHER MAIN RESULTS AND CONTRIBUTIONS First, interoperability is a hot topic for both the linguistic annotation community and the whole Computer Science field. The specification (and implementation) of OntoTag’s architecture for the combination and integration of linguistic (annotation) tools and annotations by means of ontologies shows a way to make these different linguistic annotation tools and annotations interoperate in practice. Second, as mentioned above, the elements involved in linguistic annotation were formalised in a set (or network) of ontologies (OntoTag’s linguistic ontologies). • On the one hand, OntoTag’s network of ontologies consists of − The Linguistic Unit Ontology (LUO), which includes a mostly hierarchical formalisation of the different types of linguistic elements (i.e., units) identifiable in a written text; − The Linguistic Attribute Ontology (LAO), which includes also a mostly hierarchical formalisation of the different types of features that characterise the linguistic units included in the LUO; − The Linguistic Value Ontology (LVO), which includes the corresponding formalisation of the different values that the attributes in the LAO can take; − The OIO (OntoTag’s Integration Ontology), which  Includes the knowledge required to link, combine and unite the knowledge represented in the LUO, the LAO and the LVO;  Can be viewed as a knowledge representation ontology that describes the most elementary vocabulary used in the area of annotation. • On the other hand, OntoTag’s ontologies incorporate the knowledge included in the different standards and recommendations for linguistic annotation released so far, such as those developed within the EAGLES and the SIMPLE European projects or by the ISO/TC 37 committee: − As far as morphosyntactic annotations are concerned, OntoTag’s ontologies formalise the terms in the EAGLES (1996a) recommendations and their corresponding terms within the ISO Morphosyntactic Annotation Framework (ISO/MAF, 2008) standard; − As for syntactic annotations, OntoTag’s ontologies incorporate the terms in the EAGLES (1996b) recommendations and their corresponding terms within the ISO Syntactic Annotation Framework (ISO/SynAF, 2010) standard draft; − Regarding semantic annotations, OntoTag’s ontologies generalise and extend the recommendations in EAGLES (1996a; 1996b) and, since no stable standards or standard drafts have been released for semantic annotation by ISO/TC 37 yet, they incorporate the terms in SIMPLE (2000) instead; − The terms coming from all these recommendations and standards were supplemented by those within the ISO Data Category Registry (ISO/DCR, 2008) and also of the ISO Linguistic Annotation Framework (ISO/LAF, 2009) standard draft when developing OntoTag’s ontologies. Third, we showed that the combination of the results of tools annotating at the same level can yield better results (both in precision and in recall) than each tool separately. In particular, 1. OntoTagger clearly outperformed two of the tools integrated into its configuration, namely DataLexica and FDG in all the combination sub-phases in which they overlapped (i.e. POS tagging, lemma annotation and morphological feature annotation). As far as the remaining tool is concerned, i.e. LACELL’s tagger, it was also outperformed by OntoTagger in POS tagging and lemma annotation, and it did not behave better than OntoTagger in the morphological feature annotation layer. 2. As an immediate result, this implies that a) This type of combination architecture configurations can be applied in order to improve significantly the accuracy of linguistic annotations; and b) Concerning the morphosyntactic level, this could be regarded as a way of constructing more robust and more accurate POS tagging systems. Fourth, Semantic Web annotations are usually performed by humans or else by machine learning systems. Both of them leave much to be desired: the former, with respect to their annotation rate; the latter, with respect to their (average) precision and recall. In this work, we showed how linguistic tools can be wrapped in order to annotate automatically Semantic Web pages using ontologies. This entails their fast, robust and accurate semantic annotation. As a way of example, as mentioned in Sub-goal 5.5, we developed a particular OntoTagger module for the recognition, classification and labelling of named entities, according to the MUC and ACE tagsets (Chinchor, 1997; Doddington et al., 2004). These tagsets were further specified by means of a domain ontology, namely the Cinema Named Entities Ontology (CNEO). This module was applied to the automatic annotation of ten different web pages containing cinema reviews (that is, around 5000 words). In addition, the named entities annotated with this module were also labelled as instances (or individuals) of the classes included in the CNEO and, then, were used to populate this domain ontology. • The statistical results obtained from the evaluation of this particular module of OntoTagger can be summarised as follows. On the one hand, as far as recall (R) is concerned, (R.1) the lowest value was 76,40% (for file 7); (R.2) the highest value was 97, 50% (for file 3); and (R.3) the average value was 88,73%. On the other hand, as far as the precision rate (P) is concerned, (P.1) its minimum was 93,75% (for file 4); (R.2) its maximum was 100% (for files 1, 5, 7, 8, 9, and 10); and (R.3) its average value was 98,99%. • These results, which apply to the tasks of named entity annotation and ontology population, are extraordinary good for both of them. They can be explained on the basis of the high accuracy of the annotations provided by OntoTagger at the lower levels (mainly at the morphosyntactic level). However, they should be conveniently qualified, since they might be too domain- and/or language-dependent. It should be further experimented how our approach works in a different domain or a different language, such as French, English, or German. • In any case, the results of this application of Human Language Technologies to Ontology Population (and, accordingly, to Ontological Engineering) seem very promising and encouraging in order for these two areas to collaborate and complement each other in the area of semantic annotation. Fifth, as shown in the State of the Art of this work, there are different approaches and models for the semantic annotation of texts, but all of them focus on a particular view of the semantic level. Clearly, all these approaches and models should be integrated in order to bear a coherent and joint semantic annotation level. OntoTag shows how (i) these semantic annotation layers could be integrated together; and (ii) they could be integrated with the annotations associated to other annotation levels. Sixth, we identified some recommendations, best practices and lessons learned for annotation standardisation, interoperation and merge. They show how standardisation (via ontologies, in this case) enables the combination, integration and interoperation of different linguistic tools and their annotations into a multilayered (or multileveled) linguistic annotation, which is one of the hot topics in the area of Linguistic Annotation. And last but not least, OntoTag’s annotation scheme and OntoTagger’s annotation schemas show a way to formalise and annotate coherently and uniformly the different units and features associated to the different levels and layers of linguistic annotation. This is a great scientific step ahead towards the global standardisation of this area, which is the aim of ISO/TC 37 (in particular, Subcommittee 4, dealing with the standardisation of linguistic annotations and resources).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

El trabajo ha caracterizado el área de Engineering, Multidisciplinary en Colombia, revisándose a nivel institucional a través de la base de datos Web of Science, los trabajos realizados por investigadores en universidades colombianas, y publicados en revistas internacionales con factor de impacto entre 1997 y 2009. En el contexto de América Latina se han publicado 2, 195 trabajos del tipo artículo o revisión en 83 revistas, y a nivel de Colombia se han encontrado 419 artículos publicados en 23 revistas. También se han analizado las Universidades mediante indicadores bibliométricos (Factor de Impacto Ponderado y Relativo y el número medio de citas por documento), encontrándose toda la producción científica localizada en 37 Universidades y destacando la Universidad Nacional de Colombia por el número de documentos, la Universidad Pontificia Bolivariana por la ratio citas frente a documentos, y la Universidad Pedagógica y Tecnológica de Colombia por el Factor de Impacto.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

El proposito del trabajo ha sido caracterizar el área de Ingeniería Química en México. Para ello, se ha revisado a nivel institucional, a través de la base de datos Web of Science (WoS), los trabajos sobre Ingeniería Química realizados por investigadores en Instituciones mexicanas y publicados en revistas internacionales con factor de impacto entre 1997 y 2008. Se ha partido del contexto de América Latina, donde se han publicado 6,183 trabajos del tipo artículo o revisión en 119 revistas, y a nivel de México se han encontrado 1,302 artículos publicados en 87 revistas la mayoría en inglés (96.08%), pero también en español (3.69%) y en francés (0.23%). Por otro lado, se han analizado las Universidades y Centros de Investigación desde el punto de vista cuantitativo y cualitativo mediante diversos indicadores bibliométricos como el Factor de Impacto Ponderado, el Factor de Impacto Relativo y la relación entre el número de citas y el número de documentos, encontrándose que de entre las cinco instituciones más productivas destaca el Instituto Mexicano del Petróleo por el número de documentos y la Universidad Nacional Autónoma de México por la relación citas frente a documentos, y por el Factor de Impacto Ponderado.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

El prop´osito del trabajo ha sido caracterizar el ´area de Ingenier´ıa Qu´ımica en M´exico. Para ello, se ha revisado a nivel institucional, a trav´es de la base de datos Web of Science (WoS), los trabajos sobre Ingenier´ıa Qu´ımica realizados por investigadores en Instituciones mexicanas y publicados en revistas internacionales con factor de impacto entre 1997 y 2008. Se ha partido del contexto de Am´erica Latina, donde se han publicado 6,183 trabajos del tipo art´ıculo o revisi´on en 119 revistas, y a nivel de M´exico se han encontrado 1,302 art´ıculos publicados en 87 revistas la mayor´ıa en ingl´es (96.08%), pero tambi´en en espa˜nol (3.69%) y en franc´es (0.23%). Por otro lado, se han analizado las Universidades y Centros de Investigaci´on desde el punto de vista cuantitativo y cualitativo mediante diversos indicadores bibliom´etricos como el Factor de Impacto Ponderado, el Factor de Impacto Relativo y la relaci´on entre el n´umero de citas y el n´umero de documentos, encontr´andose que de entre las cinco instituciones m´as productivas destaca el Instituto Mexicano del Petr´oleo por el n´umero de documentos y la Universidad Nacional Aut´onoma de M´exico por la relaci´on citas frente a documentos, y por el Factor de Impacto Ponderado

Relevância:

40.00% 40.00%

Publicador:

Resumo:

P2P applications are increasingly present on the web. We have identified a gap in current proposals when it comes to the use of traditional P2P overlays for real-time multimedia streaming. We analyze the possibilities and challenges to extend WebRTC in order to implement JavaScript APIs for P2P streaming algorithms.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The multimedia development that has taken place within the university classrooms in recent years has caused a revolution at psychological level within the collectivity of students and teachers inside and outside the classrooms. The slide show applications have become a key supporting element for university professors, who, in many cases, rely blindly in the use of them for teaching. Additionally, ill-conceived slides, poorly structured and with a vast amount of multimedia content, can be the basis of a faulty communication between teacher and student, which is overwhelmed by the appearance and presentation, neglecting their content. The same applies to web pages. This paper focuses on the study and analysis of the impact caused in the process of teaching and learning by the slide show presentations and web pages, and its positive and negative influence on the student’s learning process, paying particular attention to the consequences on the level of attention within the classroom, and on the study outside the classroom. The study is performed by means of a qualitative analysis of student surveys conducted during the last 8 school Civil Engineering School at the Polytechnic University of Madrid. It presents some of the weaknesses of multimedia material, including the difficulties for students to study them, because of the many distractions they face and the need for incentives web pages offer, or the insignificant content and shallowness of the studies due to wrongly formulated presentations.