55 resultados para WBAN Bluetooth Wearable Sensors Cupid RTOS RTX RL-ARM cortex-m4 WSN parkinson
Resumo:
In this paper, an AlN/free-standing nanocrystalline diamond (NCD) system is proposed in order to process high frequency surface acoustic wave (SAW) resonators for sensing applications. The main problem of synthetic diamond is its high surface roughness that worsens the sputtered AlN quality and hence the device response. In order to study the feasibility of this structure, AlN films from 150 nm up to 1200 nm thick have been deposited on free-standing NCD. We have then analysed the influence of the AlN layer thickness on its crystal quality and device response. Optimized thin films of 300 nm have been used to fabricate of one-port SAW resonators operating in the 10–14 GHz frequency range. A SAW based sensor pressure with a sensibility of 0.33 MHz/bar has been fabricated.
Resumo:
Satellite image data have become an important source of information for monitoring vegetation and mapping land cover at several scales. Beside this, the distribution and phenology of vegetation is largely associated with climate, terrain characteristics and human activity. Various vegetation indices have been developed for qualitative and quantitative assessment of vegetation using remote spectral measurements. In particular, sensors with spectral bands in the red (RED) and near-infrared (NIR) lend themselves well to vegetation monitoring and based on them [(NIR - RED) / (NIR + RED)] Normalized Difference Vegetation Index (NDVI) has been widespread used. Given that the characteristics of spectral bands in RED and NIR vary distinctly from sensor to sensor, NDVI values based on data from different instruments will not be directly comparable. The spatial resolution also varies significantly between sensors, as well as within a given scene in the case of wide-angle and oblique sensors. As a result, NDVI values will vary according to combinations of the heterogeneity and scale of terrestrial surfaces and pixel footprint sizes. Therefore, the question arises as to the impact of differences in spectral and spatial resolutions on vegetation indices like the NDVI. The aim of this study is to establish a comparison between two different sensors in their NDVI values at different spatial resolutions.
Resumo:
Improving energy efficiency in buildings is one of the goals of the Smart City initiatives and a challenge for the European Union. This paper presents a 6LoWPAN wireless transducer network (BatNet) as part of an open energy management system. This network has been designed to operate in buildings, to collect environmental information (temperature, humidity, illumination and presence) and electrical consumption in real time (voltage, current and power factor). The system has been implemented and tested in the Energy Efficiency Research Facility at CeDInt-UPM.
Resumo:
Stroke is the leading cause of long-term disability in the United States, affecting over 795,000 people annually. In order to regain motor function of the upper body, patients are usually treated by regular sessions with a dedicated physical therapist. A cost-effective wearable upper body orthotics system that can be used at home to empower both the patients and physical therapists is described. The system is composed of a thin, compliant, lightweight, cost-effective soft orthotic device with an integrated cable actuation system that is worn over the upper body, an embedded limb position sensing system, an electric actuator package and controller. The proposed device is robust to misalignments that may occur during actuation of the compliant brace or when putting on the system. Through simulations and experimental evaluation, it was demonstrated i) that the soft orthotic cable-driven shoulder brace can be successfully actuated without the production of off-axis torques in the presence of misalignments and ii) that the proposed model can identify linear and angular misalignments online.
Resumo:
The availability of inertial sensors embedded in mobile devices has enabled a new type of interaction based on the movements or “gestures” made by the users when holding the device. In this paper we propose a gesture recognition system for mobile devices based on accelerometer and gyroscope measurements. The system is capable of recognizing a set of predefined gestures in a user-independent way, without the need of a training phase. Furthermore, it was designed to be executed in real-time in resource-constrained devices, and therefore has a low computational complexity. The performance of the system is evaluated offline using a dataset of gestures, and also online, through some user tests with the system running in a smart phone.
Resumo:
The study of temperature gradients in cold stores and containers is a critical issue in the food industry for the quality assurance of products during transport, as well as forminimizing losses. The objective of this work is to develop a new methodology of data analysis based on phase space graphs of temperature and enthalpy, collected by means of multidistributed, low cost and autonomous wireless sensors and loggers. A transoceanic refrigerated transport of lemons in a reefer container ship from Montevideo (Uruguay) to Cartagena (Spain) was monitored with a network of 39 semi-passive TurboTag RFID loggers and 13 i-button loggers. Transport included intermodal transit from transoceanic to short shipping vessels and a truck trip. Data analysis is carried out using qualitative phase diagrams computed on the basis of Takens?Ruelle reconstruction of attractors. Fruit stress is quantified in terms of the phase diagram area which characterizes the cyclic behaviour of temperature. Areas within the enthalpy phase diagram computed for the short sea shipping transport were 5 times higher than those computed for the long sea shipping, with coefficients of variation above 100% for both periods. This new methodology for data analysis highlights the significant heterogeneity of thermohygrometric conditions at different locations in the container.
Resumo:
The Internet of Things (IoT) is growing at a fast pace with new devices getting connected all the time. A new emerging group of these devices are the wearable devices, and Wireless Sensor Networks are a good way to integrate them in the IoT concept and bring new experiences to the daily life activities. In this paper we present an everyday life application involving a WSN as the base of a novel context-awareness sports scenario where physiological parameters are measured and sent to the WSN by wearable devices. Applications with several hardware components introduce the problem of heterogeneity in the network. In order to integrate different hardware platforms and to introduce a service-oriented semantic middleware solution into a single application, we propose the use of an Enterprise Service Bus (ESB) as a bridge for guaranteeing interoperability and integration of the different environments, thus introducing a semantic added value needed in the world of IoT-based systems. This approach places all the data acquired (e.g., via Internet data access) at application developers disposal, opening the system to new user applications. The user can then access the data through a wide variety of devices (smartphones, tablets, computers) and Operating Systems (Android, iOS, Windows, Linux, etc.).
Resumo:
El planteamiento inicial era proveer al individuo invidente de un sistema autónomo capaz de guiarle según sus preferencias. El resultado obtenido al finalizar este proyecto ha sido un dispositivo autónomo configurable por el usuario mediante una aplicación sw , desarrollada en la plataforma móvil Android capaz de comunicarse con el dispositivo autónomo(móvil personal). La idea de utilizar como plataforma de desarrollo sw Android, se basó fundamentalmente en que es código open source, es gratuito y está presente en el 70 por ciento de los móviles de Europa. La idea inicial era que ambos hubieran sido integrados en un mismo dispositivo, pero una vez comenzado el proyecto y habiendo evaluado los hábitos actuales, decidimos adaptar la idea general del proyecto, a nuestros días. Para ello hicimos uso del dispositivo móvil más usado hoy en día, como es nuestros teléfonos móviles, o más bien los llamado Smartphone, con los cuales podemos desde su aplicación originaria que es llamar, hasta realizar multitud de operaciones al mismo tiempo como puede ser comunicación por internet, posicionamiento via GPS, intercambio de ficheros por bluetooth… tantas como podamos programar. Sobre este último atributo, intercambio de información a través de bluetooth, es la interfaz que vamos a aprovechar para la realización de nuestro proyecto. Hoy en día el 90% de los Smartphone tiene entre sus características de conectividad la posibilidad de intercambiar información vía bluetooth. Una vez se tiene resuelto el interfaz entre el medio y el usuario se debe solucionar la forma de transformar la información para que los dispositivos móviles recojan la información y sepan discernir entre la información importante y la que no lo es. Para ello hemos desarrollado una tarjeta configurable, con un módulo bluetooth comercial para enviar la información. El resultado final de esta tarjeta proporciona una manera fácil de configurar diferentes mensajes que serán utilizados según la situación. ABSTRACT The initial approach consisted of a system that shows the way for blind people to get somewhere or something or provide to them important information, an autonomous system able to guide to their preference. After several analyses the project accomplish is a standalone device configurable by the user via an application sw, developed in Android mobile platform capable of communicating with the standalone device (personal cell phone). The decision of using the sw development platform of Android was due to the open source code concept and the great extent of presence on 70 percent of European mobiles. The first idea was that the sw and the device were integrated into a single device, but once the project had been started and having assessed the current habits, it has changed to be adapted to the present technology to get a better usability on the present-day. To achieve the project goals the most used mobile device today was used, our mobile phones, or rather called Smartphone, which you could use to phone your mother or perform many operations simultaneously such as communication online, positioning via GPS, bluetooth file trading program, etc. On this last attribute, information sharing via bluetooth, is the interface that it has been taken to complete the project. Today 90% of the Smartphone include in its connectivity features the ability to exchange information via bluetooth. Once that it was solved the interface between the environment and the final user, the next step incorporates the transformation of the information that the mobile devices collect from the environment to discern between the information the user configure to be notified or not. The hardware device that makes it possible is a configurable card with a bluetooth module that is able to send the information. The final result of this card provides an easy way to configure different messages, that we could use depending of the situation.
Resumo:
A time division multiplexing (TDM) array for passive multiplexing of identical fibre, optic intensity sensors has been demonstrated. Microbending loss sensors are introduced in fibre optic rings and pressure information is directly detected, demultiplexed and demodulated from the relative amplitude of the first two pulses produced on each ring. Several dynamic ranges from 6 dB to 14 dB are shown. A comparison between both fibre optic ring and Mach-Zehnder structure impulse responses is carried out and the consequences derived from second- and higher-order recirculating ring pulses are also evaluated. This technique can be applied to those TDM intensity sensing schemes which require low cost, high number of identical sensors, and suffer high element loss and undersirable intensity fluctuations at low frequencies.
Resumo:
Satellite image data have become an important source of information for monitoring vegetation and mapping land cover at several scales. Beside this, the distribution and phenology of vegetation is largely associated with climate, terrain characteristics and human activity. Various vegetation indices have been developed for qualitative and quantitative assessment of vegetation using remote spectral measurements. In particular, sensors with spectral bands in the red (RED) and near-infrared (NIR) lend themselves well to vegetation monitoring and based on them [(NIR - RED) / (NIR + RED)] Normalized Difference Vegetation Index (NDVI) has been widespread used. Given that the characteristics of spectral bands in RED and NIR vary distinctly from sensor to sensor, NDVI values based on data from different instruments will not be directly comparable. The spatial resolution also varies significantly between sensors, as well as within a given scene in the case of wide-angle and oblique sensors. As a result, NDVI values will vary according to combinations of the heterogeneity and scale of terrestrial surfaces and pixel footprint sizes. Therefore, the question arises as to the impact of differences in spectral and spatial resolutions on vegetation indices like the NDVI and their interpretation as a drought index. During 2012 three locations (at Salamanca, Granada and Córdoba) were selected and a periodic pasture monitoring and botanic composition were achieved. Daily precipitation, temperature and monthly soil water content were measurement as well as fresh and dry pasture weight. At the same time, remote sensing images were capture by DEIMOS-1 and MODIS of the chosen places. DEIMOS-1 is based on the concept Microsat-100 from Surrey. It is conceived for obtaining Earth images with a good enough resolution to study the terrestrial vegetation cover (20x20 m), although with a great range of visual field (600 km) in order to obtain those images with high temporal resolution and at a reduced cost. By contranst, MODIS images present a much lower spatial resolution (500x500 m). The aim of this study is to establish a comparison between two different sensors in their NDVI values at different spatial resolutions. Acknowledgements. This work was partially supported by ENESA under project P10 0220C-823. Funding provided by Spanish Ministerio de Ciencia e Innovación (MICINN) through project no. MTM2009-14621 and i-MATH No. CSD2006-00032 is greatly appreciated.
Resumo:
The solar irradiation that a crop receives is directly related to the physical and biological processes that affect the crop. However, the assessment of solar irradiation poses certain problems when it must be measured through fruit inside the canopy of a tree. In such cases, it is necessary to check many test points, which usually requires an expensive data acquisition system. The use of conventional irradiance sensors increases the cost of the experiment, making them unsuitable. Nevertheless, it is still possible to perform a precise irradiance test with a reduced price by using low-cost sensors based on the photovoltaic effect. The aim of this work is to develop a low-cost sensor that permits the measurement of the irradiance inside the tree canopy. Two different technologies of solar cells were analyzed for their use in the measurement of solar irradiation levels inside tree canopies. Two data acquisition system setups were also tested and compared. Experiments were performed in Ademuz (Valencia, Spain) in September 2011 and September 2012 to check the validity of low-cost sensors based on solar cells and their associated data acquisition systems. The observed difference between solar irradiation at high and low positions was of 18.5% ± 2.58% at a 95% confidence interval. Large differences were observed between the operations of the two tested sensors. In the case of a-Si cells based mini-modules, an effect of partial shadowing was detected due to the larger size of the devices, the use of individual c-Si cells is recommended over a-Si cells based mini-modules.
Resumo:
In order to try to apply nature-related learned concepts to optical sensors and to smart structures, and after some considerations concerning the differences between biophotonic andphotobiological sensors, some Sensory Physiology notions are presented. The influence of the subjective notions of perception are shown. Several examples are given of sensory illusions and the differences between seeing and interpreting. Different types of eyes, ranging from the compound to the mammalian eyes, are studied. A first interpretation of the previous facts concludes the paper as well as some considerations about the chaos as a possible tool to interpret them.
Resumo:
This study was motivated by the need to improve densification of Global Horizontal Irradiance (GHI) observations, increasing the number of surface weather stations that observe it, using sensors with a sub-hour periodicity and examining the methods of spatial GHI estimation (by interpolation) with that periodicity in other locations. The aim of the present research project is to analyze the goodness of 15-minute GHI spatial estimations for five methods in the territory of Spain (three geo-statistical interpolation methods, one deterministic method and the HelioSat2 method, which is based on satellite images). The research concludes that, when the work area has adequate station density, the best method for estimating GHI every 15 min is Regression Kriging interpolation using GHI estimated from satellite images as one of the input variables. On the contrary, when station density is low, the best method is estimating GHI directly from satellite images. A comparison between the GHI observed by volunteer stations and the estimation model applied concludes that 67% of the volunteer stations analyzed present values within the margin of error (average of +-2 standard deviations).
Resumo:
Versatile and accurate motion capture systems, with the required properties to be integrated within both clinical and domiciliary environments, would represent a significant advance in following the progress of the patients as well as in allowing the incorporation of new data exploitation and analysis methods to enhance the functional neurorehabilitation therapeutic processes. Besides, these systems would permit the later development of new applications focused on the automatization of the therapeutic tasks in order to increase the therapist/patient ratio, thus decreasing the costs [1]. However, current motion capture systems are not still ready to work within uncontrolled environments.
Resumo:
Applications based on Wireless Sensor Networks for Internet of Things scenarios are on the rise. The multiple possibilities they offer have spread towards previously hard to imagine fields, like e-health or human physiological monitoring. An application has been developed for its usage in scenarios where data collection is applied to smart spaces, aiming at its usage in fire fighting and sports. This application has been tested in a gymnasium with real, non-simulated nodes and devices. A Graphic User Interface has been implemented to suggest a series of exercises to improve a sportsman/woman s condition, depending on the context and their profile. This system can be adapted to a wide variety of e-health applications with minimum changes, and the user will interact using different devices, like smart phones, smart watches and/or tablets.