78 resultados para Vigas contínuas
Resumo:
En este trabajo se introducen, en el contexto del Método de Elementos Finitos, dos alternativas posibles en relación con el concepto de acción repartida equivalente. La primera consiste en emplear pocos elementos, elevando el orden de dicha acción, mientras que la segunda se basa en emplear un mayor número de elementos dejando la acción en el orden más bajo posible. Se ilustran ambas situaciones mediante aplicaciones a los modelos de vigas de Timoshenko y Bernoulli-Euler, empleando estas acciones con diferentes órdenes, las cuales aproximan a la acción original, mediante polinomios ortogonales de Legendre en cada elemento. Como conclusión destacable, se indica que cuando se considera el menor número posible de elementos, es decir uno, para los casos de carga poco regular, ha bastado con utilizar acciones repartidas equivalentes de orden ligeramente superior al mínimo (orden cuatro), para obtener una excelente aproximación en los desplazamientos, giros y esfuerzos en el interior de los elementos.
Resumo:
En este trabajo se analizan algunos resultados obtenidos por Trabucho y Viaño, mediante desarrollo asintótico de las ecuaciones de la elasticidad tridimensional en vigas de sección constante, para la distribución de tensiones tangenciales en una sección transversal bajo la acción de un esfuerzo cortante. Se aplican, con carácter ilustrativo, a vigas con distintos tipos de secciones tranversales (rectangular, circular, triangular y perfil UPN) comparando los resultados con los que se calculan habitualmente con las fórmulas clásicas elementales de la Resistencia de Materiales
Resumo:
Una técnica de refuerzo de elementos flectados en general y, en particular, de vigas y forjados de hormigón armado, consiste en la disposición de perfiles metálicos por debajo de los elementos a reforzar y retacados a ellos. En muchos casos este refuerzo se diseña con un planteamiento pasivo, es decir, los perfiles no entran en carga hasta que no se incrementan las acciones sobre el elemento reforzado, o lo hacen sólo ligeramente y de forma cuantitativamente no controlada efectuando el retacado mediante cuñas metálicas. En el presente trabajo se estudia la alternativa del refuerzo de vigas de hormigón armado frente a momentos flectores con un planteamiento activo, introduciendo unas fuerzas (por ejemplo, mediante gatos o barras roscadas) entre el perfil y el elemento a reforzar, y retacando posteriormente el perfil a la viga en los puntos de introducción de las fuerzas, mediante cuñas metálicas, mortero, etc. La propuesta que formulamos en el presente trabajo de investigación para el control de las fuerzas introducidas consiste en la medida de las flechas que se producen en el perfil metálico al hacerlo reaccionar contra la viga. Esto permite el empleo de procedimientos sencillos para la predeformación del perfil que no dispongan de dispositivos de medida de la carga introducida, o bien controlar la veracidad de las medidas de las fuerzas que dan tales dispositivos. La gran fiabilidad que tiene el cálculo de flechas en jácenas metálicas hace que con este procedimiento se puedan conocer con gran precisión las fuerzas introducidas. Las medidas de las flechas se pueden llevar a cabo mediante los procedimientos de instrumentación habituales en pruebas de carga, con una precisión más que suficiente para conocer y controlar con fiabilidad el valor de las fuerzas que el perfil ejerce sobre la viga. Los perfiles necesarios para el refuerzo con esta técnica son netamente inferiores a los que se precisarían con el planteamiento pasivo antes indicado. En el trabajo de investigación se recoge un estudio sobre el número, posición y valor de las fuerzas de refuerzo a introducir, en función de la carga para la que se diseña el refuerzo y la capacidad resistente del elemento a reforzar, y se analizan los valores máximos que pueden tener dichas fuerzas, en función de la capacidad de la pieza frente a momentos de signo contrario a los debidos a las cargas gravitatorias. A continuación se analiza la interacción viga-perfil al incrementarse las cargas sobre la viga desde el instante de la ejecución del refuerzo, interacción que hace variar el valor de las fuerzas que el perfil ejerce sobre la viga. Esta variación permite contar con un incremento en las fuerzas de refuerzo si, con las cargas permanentes presentes al reforzar, no podemos introducirlas inicialmente con el valor necesario, o si se producen pérdidas en las propias fuerzas. Este es uno de los criterios a la hora de seleccionar las características del perfil. Por el contrario, dicha variación puede suponer que en algunos puntos a lo largo del vano se supere la capacidad a flexión frente a momentos de signo contrario a los debidos a las cargas gravitatorias, lo que también debe ser tenido en cuenta. Seguidamente se analizan diferentes aspectos que producen una variación en el valor de las fuerzas de refuerzo, como son las deformaciones diferidas del hormigón (fluencia y retracción), los gradientes de temperatura en la pieza, o la actuación de sobrecargas en los vanos adyacentes. Se concluye los efectos de estos fenómenos, que en ocasiones tienen gran influencia, pueden ser cuantificados por el proyectista, recogiéndose propuestas sencillas para su consideración en casos habituales. Posteriormente recogemos una propuesta de metodología de comprobación del refuerzo, en cuanto a cómo considerar la fisuración y evolución del módulo de deformación de la viga, la introducción de la seguridad, la influencia de las tolerancias de laminación en el perfil sobre el valor calculado de las flechas necesarias en el perfil para introducir las fuerzas iniciales proyectadas, o la situación accidental de fuego, entre otros aspectos. Por último, se exponen las conclusiones más relevantes de la investigación realizada, y se proponen futuras líneas de investigación. One technique for strengthening flexural members in general, and reinforced concrete beams and slabs in particular, entails caulking the underside of these members with steel shapes. This sort of strengthening is often designed from a passive approach; i.e., until the load is increased, the shapes are either not loaded or are only slightly loaded to some unquantified extent by caulking with steel shims. The present study explored the possibility of actively strengthening the capacity of reinforced concrete beams to resist bending moments by applying forces (with jacks or threaded bars, for instance) between the shape and the member to be strengthened. The shape is subsequently caulked under the beam at the points where the forces are applied with steel shims, mortar or similar. The proposal put forward in the present study to monitor the forces applied consists in measuring the deflection on the steel shape as it reacts against the beam. With this technique, the shape can be pre-strained using simple procedures that do not call for devices to measure the force applied, or the accurancy of the respective measurements can be verified. As deflection calculations in steel girders are extremely reliable, the forces applied with this procedure can be very precisely determined. Standard instrumental procedures for load testing can be used to measure deflection with more than sufficient precision to reliably determine and monitor the value of the forces exerted on the beam by the shape. Moreover, the shapes required to strengthen members with this technique are substantially smaller than the ones needed in the aforementioned passive approach. This study addressed the number, position and value of the strengthening forces to be applied in terms of the load for which strengthening was designed and the bearing capacity of the member to be strengthened. The maximum value of such forces was also analysed as a function of the capacity of the member to resist counter-gravity moments. An analysis was then conducted of beam-shape interaction when the load on the beam raises since the instant that strengthening is applied, interaction that alters the forces applied to the beam by the shape. This variation can provide an increment in the forces if we cannot introduce them initially with the value calculated as necessary because they were limited by the permanent loads existing when strengthening, or if losses occur in the forces themselves. This is one of the criteria for defining shape specifications. Conversely, such variation may cause the forces to exceed beam counter-gravity bending strength at some points in the span, a development that must also be taken into consideration. Other factors inducing variations in the strengthening force values were then analysed, including deferred concrete strain (creep and shrinkage), temperature gradients in the member and the live loads acting on adjacent spans. The inference drawn was that these developments, which may on occasion have a heavy impact, can be quantified by the design engineer, particularly in ordinary situations, for which simple procedures are proposed. Methodology is likewise proposed for verifying strength in terms of how to appraise beam's cracking and variations in modulus of deformation; safety concerns; the effect of shape lamination tolerance on the calculated deflection necessary for the shape to apply the design forces; and fire-induced situations, among others. Lastly, the most prominent conclusions are discussed and future lines of research are suggested.
Resumo:
(SPA) El terremoto de Lorca (11-05-2011) fue el movimiento sísmico más destructivo registrado en España, a pesar de su moderada magnitud. Este artículo describe la simulación numérica de la respuesta dinámica, al registro principal del terremoto de Lorca, de seis edificios de tres y seis plantas con forjados unidireccionales de hormigón con vigas planas; estos edificios fueron proyectados sin tener en cuenta la acción sísmica. Se ha elegido esta tipología constructiva por presentar, potencialmente, una elevada vulnerabilidad sísmica. Los seis edificios han sido seleccionados para representar un número importante de edificios de este tipo existentes en zonas de sismicidad baja o media (como Lorca) de España y correspondientes a los años 1974-1994, posteriores a la PDS-1 1974 y previos a la NCSE-94. Los resultados obtenidos muestran que estos edificios, aun contando con la cooperación de los muros, no poseen capacidad para resistir la componente más intensa del registro de Lorca. (ENG)The recent earthquake in Lorca (11-05-2011) was the most destructive recorded event in Spain, despite its moderate magnitude. This paper describes the numerical simulation of the dynamic response to the main record of the Lorca earth-quake of six 3 and 6-story buildings with one-way concrete slabs with wide beams; these buildings were designed without any seismic consideration. We have chosen this type of construction because it is potentially highly vulnerable. The six considered buildings were selected to represent a large number of buildings of this type in areas of low-to-medium seismicity (as Lorca) of Spain along the period 1974-1994. The results show that these buildings, even with the cooperation of the walls, do not have sufficient capacity to withstand the most severe component of the Lorca record.
Resumo:
En este trabajo se realiza un estudio experimental del comportamiento de veinte vigas de madera aserrada de pino silvestre para uso estructural, de dimensiones 155x75x1090mm y reforzadas con materiales compuestos de fibra de carbono. La procedencia de la madera es el aserradero de Valsaín. Los ensayos se han realizado en el Laboratorio de Materiales de Construcción de la Escuela Universitaria de Arquitectura Técnica de Madrid con una máquina de ensayos Universal. El objetivo del trabajo es el análisis del comportamiento a flexión de las piezas ensayadas reforzadas con materiales compuestos de fibra de carbono realizados con tejidos unidireccionales y bidireccionales. De las veinte vigas ensayadas nueve fueron sin reforzar y el resto se reforzaron con el refuerzo en forma de ?U?, adhiriendo el material compuesto a la cara inferior y los laterales de las vigas, hasta una altura de la mitad del canto. Para la realización de los FRP se han empleado tejidos de fibra de carbono unidireccionales y bidireccionales. El gramaje de los tejidos unidireccionales es de 300gr/m2 y se ha aplicado en una capa. Los tejidos bidireccionales utilizados tienen dos gramajes distintos, 160gr/m2 y 210gr/m2. Éstos últimos se han aplicado en una y en dos capas. Las nueve vigas ensayadas sin reforzar han servido como testigo para analizar el aumento de la capacidad de carga de las vigas reforzadas. A partir de los datos facilitados por el software se asociado a la máquina de ensayos se trazaron los gráficos carga-desplazamiento, con el fin de analizar las cargas máximas de rotura alcanzadas, desplazamientos y rigidez de las piezas. Posteriormente se realiza un análisis analítico hallando los valores medio de las cargas de rotura y los desplazamientos, realizando una comparación entre los datos obtenidos para las vigas sin reforzar y las reforzadas con los distintos sistemas. En las conclusiones se presentan los resultados del análisis realizado, estudiando el incremento de la capacidad de carga de las vigas reforzadas con respecto a las no reforzadas, y comparando entre sí el funcionamiento de los refuerzos aplicados.
Resumo:
Las vigas Vierendel
Resumo:
El objeto principal de este trabajo de investigación ha sido determinar si la relación de resistencias entre pilar y viga de valor 1.3, como es por ejemplo el fijado por el Eurocódigo, es suficiente para garantizar un mecanismo de columna fuerte viga débil y por lo tanto un correcto trabajo en el rango inelástico de la estructura. A este respecto y de acuerdo a la escasa literatura especializada al respecto, algunos autores tales como Paulay y Priestly (1992) o Kuntz y Browing (2003), hablan de alcanzar valores de hasta 1.8 los primeros, o valores de hasta cuatro para edificios de hasta 16 platas los segundos. En este trabajo se ha realizado un estudio paramétrico sobre una tipología estructural convencional de pórticos de hormigón armado. Para ello se ha diseñado cuatro prototipos en forma de pórticos planos con 3, 6, 9 y 12 plantas. Mediante el programa de la Universidad de Buffalo del Estado de Nueva York llamado IDARC, se ha realizado un análisis dinámico en el tiempo para los cuatro prototipos, con un catálogo de un total de 28 sismos, registrados en Europa. El programa IDARC permite la realización de un análisis en el que se tiene en cuenta factores como la no-linealidad de los materiales o las reglas histeréticas que se pretende aplicar al modelo. Los resultados del programa aportaran si con la relación de resistencia pilar-viga de 1.3, se consigue un comportamiento tipo columna fuerte viga débil.
Resumo:
El vidrio se trata de un material muy apreciado en la arquitectura debido a la transparencia, característica que pocos materiales tienen. Pero, también es un material frágil, con una rotura inmediata cuando alcanza su límite elástico, sin disponer de un período plástico, que advierta de su futura rotura y permita un margen de seguridad. Por ambas razones, el vidrio se ha utilizado en arquitectura como elemento de plementería o relleno, desde tiempos antiguos, pero no como elemento estructural o portante, pese a que es un material interesante para los arquitectos para ese uso, por su característica de transparencia, ya que conseguiría la desmaterialización visual de la estructura, logrando espacios más ligeros y livianos. En cambio, si se tienen en cuenta las propiedades mecánicas del material se puede comprobar que dispone de unas características apropiadas para su uso estructural, ya que su Módulo elástico es similar al del aluminio, elemento muy utilizado en la arquitectura principalmente en las fachadas desde los últimos años, y su resistencia a compresión es muy superior incluso al hormigón armado; aunque su principal problema es su resistencia a tracción que es muy inferior a su resistencia a compresión, lo que penaliza su resistencia a flexión. En la actualidad se empieza a utilizar el vidrio como elemento portante o estructural, pero debido a su peor resistencia a flexión, se utilizan con grandes dimensiones que, a pesar de su transparencia, tienen una gran presencia. Por ello, la presente investigación pretende conseguir una reducción de las secciones de estos elementos estructurales de vidrio. Entonces, para el desarrollo de la investigación es necesario responder a una serie de preguntas fundamentales, cuyas respuestas serán el cuerpo de la investigación: 1. ¿Cuál es la finalidad de la investigación? El objetivo de esta investigación es la optimización de elementos estructurales de vidrio para su utilización en arquitectura. 2. ¿Cómo se va a realizar esa optimización? ¿Qué sistemas se van a utilizar? El sistema para realizar la optimización será la pretensión de los elementos estructurales de vidrio 3. ¿Por qué se va a utilizar la precompresión? Porque el vidrio tiene un buen comportamiento a compresión y un mal comportamiento a tracción lo que penaliza su utilización a flexión. Por medio de la precompresión se puede incrementar esta resistencia a tracción, ya que los primeros esfuerzos reducirán la compresión inicial hasta comenzar a funcionar a tracción, y por tanto aumentará su capacidad de carga. 4. ¿Con qué medios se va a comprobar y justificar ese comportamiento? Mediante simulaciones informáticas con programas de elementos finitos. 5. ¿Por qué se utilizará este método? Porque es una herramienta que arroja ventajas sobre otros métodos como los experimentales, debido a su fiabilidad, economía, rapidez y facilidad para establecer distintos casos. 6. ¿Cómo se garantiza su fiabilidad? Mediante el contraste de resultados obtenidos con ensayos físicos realizados, garantizando de ésta manera el buen comportamiento de los programas utilizados. El presente estudio tratará de responder a todas estas preguntas, para concluir y conseguir elementos estructurales de vidrio con secciones más reducidas gracias a la introducción de la precompresión, todo ello a través de las simulaciones informáticas por medio de elementos finitos. Dentro de estas simulaciones, también se realizarán comprobaciones y comparaciones entre distintas tipologías de programas para comprobar y contrastar los resultados obtenidos, intentando analizar cuál de ellos es el más idóneo para la simulación de elementos estructurales de vidrio. ABSTRACT Glass is a material very appreciated in architecture due to its transparency, feature that just a few materials share. But it is also a brittle material with an immediate breakage when it reaches its elastic limit, without having a plastic period that provides warning of future breakage allowing a safety period. For both reasons, glass has been used in architecture as infill panels, from old times. However, it has never been used as a structural or load‐bearing element, although it is an interesting material for architects for that use: because of its transparency, structural glass makes possible the visual dematerialization of the structure, achieving lighter spaces. However, taking into account the mechanical properties of the material, it is possible to check that it has appropriate conditions for structural use: its elastic modulus is similar to that of aluminium, element widely used in architecture, especially in facades from recent years; and its compressive strength is much higher than even the one of concrete. However, its main problem consists in its tensile strength that is much lower than its compressive strength, penalizing its resistance to bending. Nowadays glass is starting to be used as a bearing or structural element, but due to its worse bending strength, elements with large dimensions must be used, with a large presence despite its transparency. Therefore this research aims to get smaller sections of these structural glass elements. For the development of this thesis, it is necessary to answer a number of fundamental questions. The answers will be the core of this work: 1. What is the purpose of the investigation? The objective of this research is the optimization of structural glass elements for its use in architecture. 2. How are you going to perform this optimization? What systems will be implemented? The system for optimization is the pre‐stress of the structural elements of glass 3. Why are you going to use the pre‐compression? Because glass has a good resistance to compression and a poor tensile behaviour, which penalizes its use in bending elements. Through the pre‐compression it is possible to increase this tensile strength, due to the initial tensile efforts reducing the pre‐stress and increasing its load capacity. 4. What are the means that you will use in order to verify and justify this behaviour? The means are based on computer simulations with finite element programs (FEM) 5. Why do you use this method? Because it is a tool which gives advantages over other methods such as experimental: its reliability, economy, quick and easy to set different cases. 6. How the reliability is guaranteed? It’s guaranteed comparing the results of the simulation with the performed physical tests, ensuring the good performance of the software. This thesis will attempt to answer all these questions, to obtain glass structural elements with smaller sections thanks to the introduction of the pre‐compression, all through computer simulations using finite elements methods. In these simulations, tests and comparisons between different types of programs will also be implemented, in order to test and compare the obtained results, trying to analyse which one is the most suitable for the simulation of structural glass elements.
Resumo:
El tema central de investigación en esta Tesis es el estudio del comportamientodinámico de una estructura mediante modelos que describen la distribución deenergía entre los componentes de la misma y la aplicación de estos modelos parala detección de daños incipientes.Los ensayos dinámicos son un modo de extraer información sobre las propiedadesde una estructura. Si tenemos un modelo de la estructura se podría ajustar éstepara que, con determinado grado de precisión, tenga la misma respuesta que elsistema real ensayado. Después de que se produjese un daño en la estructura,la respuesta al mismo ensayo variará en cierta medida; actualizando el modelo alas nuevas condiciones podemos detectar cambios en la configuración del modeloestructural que nos condujeran a la conclusión de que en la estructura se haproducido un daño.De este modo, la detección de un daño incipiente es posible si somos capacesde distinguir una pequeña variación en los parámetros que definen el modelo. Unrégimen muy apropiado para realizar este tipo de detección es a altas frecuencias,ya que la respuesta es muy dependiente de los pequeños detalles geométricos,dado que el tamaño característico en la estructura asociado a la respuesta esdirectamente proporcional a la velocidad de propagación de las ondas acústicas enel sólido, que para una estructura dada es inalterable, e inversamente proporcionala la frecuencia de la excitación. Al mismo tiempo, esta característica de la respuestaa altas frecuencias hace que un modelo de Elementos Finitos no sea aplicable enla práctica, debido al alto coste computacional.Un modelo ampliamente utilizado en el cálculo de la respuesta de estructurasa altas frecuencias en ingeniería es el SEA (Statistical Energy Analysis). El SEAaplica el balance energético a cada componente estructural, relacionando la energíade vibración de estos con la potencia disipada por cada uno de ellos y la potenciatransmitida entre ellos, cuya suma debe ser igual a la potencia inyectada a cadacomponente estructural. Esta relación es lineal y viene caracterizada por los factoresde pérdidas. Las magnitudes que intervienen en la respuesta se consideranpromediadas en la geometría, la frecuencia y el tiempo.Actualizar el modelo SEA a datos de ensayo es, por lo tanto, calcular losfactores de pérdidas que reproduzcan la respuesta obtenida en éste. Esta actualización,si se hace de manera directa, supone la resolución de un problema inversoque tiene la característica de estar mal condicionado. En la Tesis se propone actualizarel modelo SEA, no en término de los factores de pérdidas, sino en términos deparámetros estructurales que tienen sentido físico cuando se trata de la respuestaa altas frecuencias, como son los factores de disipación de cada componente, susdensidades modales y las rigideces características de los elementos de acoplamiento.Los factores de pérdidas se calculan como función de estos parámetros. Estaformulación es desarrollada de manera original en esta Tesis y principalmente sefunda en la hipótesis de alta densidad modal, es decir, que en la respuesta participanun gran número de modos de cada componente estructural.La teoría general del método SEA, establece que el modelo es válido bajounas hipótesis sobre la naturaleza de las excitaciones externas muy restrictivas,como que éstas deben ser de tipo ruido blanco local. Este tipo de carga es difícil dereproducir en condiciones de ensayo. En la Tesis mostramos con casos prácticos queesta restricción se puede relajar y, en particular, los resultados son suficientementebuenos cuando la estructura se somete a una carga armónica en escalón.Bajo estas aproximaciones se desarrolla un algoritmo de optimización por pasosque permite actualizar un modelo SEA a un ensayo transitorio cuando la carga esde tipo armónica en escalón. Este algoritmo actualiza el modelo no solamente parauna banda de frecuencia en particular sino para diversas bandas de frecuencia demanera simultánea, con el objetivo de plantear un problema mejor condicionado.Por último, se define un índice de daño que mide el cambio en la matriz depérdidas cuando se produce un daño estructural en una localización concreta deun componente. Se simula numéricamente la respuesta de una estructura formadapor vigas donde producimos un daño en la sección de una de ellas; como se tratade un cálculo a altas frecuencias, la simulación se hace mediante el Método delos Elementos Espectrales para lo que ha sido necesario desarrollar dentro de laTesis un elemento espectral de tipo viga dañada en una sección determinada. Losresultados obtenidos permiten localizar el componente estructural en que se haproducido el daño y la sección en que éste se encuentra con determinado grado deconfianza.AbstractThe main subject under research in this Thesis is the study of the dynamic behaviourof a structure using models that describe the energy distribution betweenthe components of the structure and the applicability of these models to incipientdamage detection.Dynamic tests are a way to extract information about the properties of astructure. If we have a model of the structure, it can be updated in order toreproduce the same response as in experimental tests, within a certain degree ofaccuracy. After damage occurs, the response will change to some extent; modelupdating to the new test conditions can help to detect changes in the structuralmodel leading to the conclusión that damage has occurred.In this way incipient damage detection is possible if we are able to detect srnallvariations in the model parameters. It turns out that the high frequency regimeis highly relevant for incipient damage detection, because the response is verysensitive to small structural geometric details. The characteristic length associatedwith the response is proportional to the propagation speed of acoustic waves insidethe solid, but inversely proportional to the excitation frequency. At the same time,this fact makes the application of a Finite Element Method impractical due to thehigh computational cost.A widely used model in engineering when dealing with the high frequencyresponse is SEA (Statistical Energy Analysis). SEA applies the energy balance toeach structural component, relating their vibrational energy with the dissipatedpower and the transmitted power between the different components; their summust be equal to the input power to each of them. This relationship is linear andcharacterized by loss factors. The magnitudes considered in the response shouldbe averaged in geometry, frequency and time.SEA model updating to test data is equivalent to calculating the loss factorsthat provide a better fit to the experimental response. This is formulated as an illconditionedinverse problem. In this Thesis a new updating algorithm is proposedfor the study of the high frequency response regime in terms of parameters withphysical meaning such as the internal dissipation factors, modal densities andcharacteristic coupling stiffness. The loss factors are then calculated from theseparameters. The approach is developed entirely in this Thesis and is mainlybased on a high modal density asumption, that is to say, a large number of modescontributes to the response.General SEA theory establishes the validity of the model under the asumptionof very restrictive external excitations. These should behave as a local white noise.This kind of excitation is difficult to reproduce in an experimental environment.In this Thesis we show that in practical cases this assumption can be relaxed, inparticular, results are good enough when the structure is excited with a harmonicstep function.Under these assumptions an optimization algorithm is developed for SEAmodel updating to a transient test when external loads are harmonic step functions.This algorithm considers the response not only in a single frequency band,but also for several of them simultaneously.A damage index is defined that measures the change in the loss factor matrixwhen a damage has occurred at a certain location in the structure. The structuresconsidered in this study are built with damaged beam elements; as we are dealingwith the high frequency response, the numerical simulation is implemented witha Spectral Element Method. It has therefore been necessary to develop a spectralbeam damaged element as well. The reported results show that damage detectionis possible with this algorithm, moreover, damage location is also possible withina certain degree of accuracy.
Resumo:
El uso de materiales compuestos para el refuerzo, reparación y rehabilitación de estructuras de hormigón se ha convertido en una técnica muy utilizada en la última década. Con independencia de la técnica del refuerzo, uno de los principales condicionantes del diseño es el fallo de la adherencia entre el hormigón y el material compuesto, atribuida generalmente a las tensiones en la interfaz de estos materiales. Las propiedades mecánicas del hormigón y de los materiales compuestos son muy distintas. Los materiales compuestos comúnmente utilizados en ingeniería civil poseen alta resistencia a tracción y tienen un comportamiento elástico y lineal hasta la rotura, lo cual, en contraste con el ampliamente conocido comportamiento del hormigón, genera una clara incompatibilidad para soportar esfuerzos de forma conjunta. Esta incompatibilidad conduce a fallos relacionados con el despegue del material compuesto del sustrato de hormigón. En vigas de hormigón reforzadas a flexión o a cortante, el despegue del material compuesto es un fenómeno que frecuentemente condiciona la capacidad portante del elemento. Existen dos zonas potenciales de iniciación del despegue: los extremos y la zona entre fisuras de flexión o de flexión-cortante. En el primer caso, la experiencia a través de los últimos años ha demostrado que se puede evitar prolongando el refuerzo hasta los apoyos o mediante el empleo de algún sistema de anclaje. Sin embargo, las recomendaciones para evitar el segundo caso de despegue aún se encuentran lejos de poder prever el fallo de forma eficiente. La necesidad de medir la adherencia experimentalmente de materiales FRP adheridos al hormigón ha dado lugar a desarrollar diversos métodos por la comunidad de investigadores. De estas campañas experimentales surgieron modelos para el pronóstico de la resistencia de adherencia, longitud efectiva y relación tensión-deslizamiento. En la presente tesis se propone un ensayo de beam-test, similar al utilizado para medir la adherencia de barras de acero, para determinar las características de adherencia del FRP al variar la resistencia del hormigón y el espesor del adhesivo. A la vista de los resultados, se considera que este ensayo puede ser utilizado para investigar diferentes tipos de adhesivos y otros métodos de aplicación, dado que representa con mayor realidad el comportamiento en vigas reforzadas. Los resultados experimentales se trasladan a la comprobación del fallo por despegue en la región de fisuras de flexión o flexión cortante en vigas de hormigón presentando buena concordancia. Los resultados condujeron a la propuesta de que la limitación de la deformación constituye una alternativa simple y eficiente para prever el citado modo de fallo. Con base en las vigas analizadas, se propone una nueva expresión para el cálculo de la limitación de la deformación del laminado y se lleva a cabo una comparación entre los modelos existentes mediante un análisis estadístico para evaluar su precisión. Abstract The use of composite materials for strengthening, repairing or rehabilitating concrete structures has become more and more popular in the last ten years. Irrespective of the type of strengthening used, design is conditioned, among others, by concrete-composite bond failure, normally attributed to stresses at the interface between these two materials. The mechanical properties of concrete and composite materials are very different. Composite materials commonly used in civil engineering possess high tensile strength (both static and long term) and they are linear elastic to failure, which, in contrast to the widely known behavior of concrete, there is a clear incompatibility which leads to bond-related failures. Bond failure in the composite material in bending- or shear-strengthened beams often controls bearing capacity of the strengthened member. Debonding failure of RC beams strengthened in bending by externally-bonded composite laminates takes place either, at the end (plate end debonding) or at flexure or flexure-shear cracks (intermediate crack debonding). In the first case, the experience over the past years has shown that this can be avoided by extending laminates up to the supports or by using an anchoring system. However, recommendations for the second case are still considered far from predicting failure efficiently. The need to experimentally measure FRP bonding to concrete has induced the scientific community to develop test methods for that purpose. Experimental campaigns, in turn, have given rise to models for predicting bond strength, effective length and the stress-slip relationship. The beam-type test proposed and used in this thesis to determine the bonding characteristics of FRP at varying concrete strengths and adhesive thicknesses was similar to the test used for measuring steel reinforcement to concrete bonding conditions. In light of the findings, this test was deemed to be usable to study different types of adhesives and application methods, since it reflects the behavior of FRP in strengthened beams more accurately than the procedures presently in place. Experimental results are transferred to the verification of peeling-off at flexure or flexure-shear cracks, presenting a good general agreement. Findings led to the conclusion that the strain limitation of laminate produces accurate predictions of intermediate crack debonding. A new model for strain limitation is proposed. Finally, a comprehensive evaluation based on a statistical analysis among existing models is carried out in order to assess their accuracy.
Resumo:
Los nudos son los defectos que más disminuyen la resistencia de piezas de madera en la escala estructural, al ocasionar no solo una discontinuidad material, sino también la desviación de las fibras que se encuentran a su alrededor. En la década de los 80 se introdujo la teoría de la analogía fluido-fibra, como un método que aproximaba adecuadamente todas estas desviaciones. Sin embargo en su aplicación tridimensional, nunca se consideraron las diferencias geométricas en el sentido perpendicular al eje longitudinal de las piezas estructurales, lo cual imposibilitaba la simulación numérica de algunos de los principales tipos de nudos, y disminuía la precisión obtenida en aquellos nudos en los que la modelización sí era viable. En este trabajo se propone un modelo programado en lenguaje paramétrico de un software de elementos finitos que, bajo una formulación en tres dimensiones más general, permitirá estudiar de forma automatizada el comportamiento estructural de la madera bajo la influencia de los principales tipos de nudos, a partir de la geometría visible de los mismos y la posición de la médula en la pieza, y el cual ha sido contrastado experimentalmente, simulando de forma muy precisa el comportamiento mecánico de vigas sometidas a ensayos de flexión a cuatro puntos. Knots are the defects that most reduce the strength of lumber at the structural level, by causing not only a material discontinuity but also the deviation of the fibers that surround them. In the 80's it was introduced the theory of the flow-grain analogy as a method to approximating adequately these deviations. However, in three-dimensional applications, geometrical differences in the direction perpendicular to the longitudinal axis of the structural specimens were never considered before, which prevented the numerical simulation of some of the main types of knots, and decreased the achieved precision in those kind of knots where modeling itself was possible. This paper purposes a parametric model programmed in a finite element software, in the way that with a more general three-dimensional formulation, an automated study of the structural behavior of timber under the influence of the main types of knots is allowed by only knowing the visible geometry of such defects, and the position of the pith. Furthermore that has been confirmed experimentally obtaining very accurately simulations of the mechanical behavior of beams under four points bending test.
Resumo:
Se ha evaluado el comportamiento mecánico y estructural de dos aceros inoxidables corrugados, el austenítico EN 1.4301 (AISI 304) y el dúplex EN 1.4362 (AISI 2304), y se han comparado con el tradicional acero al carbono B500SD. El estudio se ha realizado en tres niveles: a nivel de barra, estudiando las propiedades mecánicas y de ductilidad de los tres aceros; a nivel de sección, analizando el comportamiento a flexión por medio de diagramas momento-curvatura; y a nivel de pieza, ensayando una serie de vigas armadas con diferentes aceros y cuantías, y comprobando su comportamiento por medio de los diagramas carga-desplazamiento. La comparación del comportamiento frente a la corrosión entre los dos aceros inoxidables se ha realizado mediante mediciones electroquímicas de armaduras embebidas en probetas de mortero contaminado con diferentes cuantías de cloruros
Resumo:
Los fenómenos de impacto y explosión sobre estructuras de hormigón tienen efectos en muchos casos catastróficos a pesar de su reducida probabilidad. Las estructuras de hormigón no suelen estar diseñadas para resistir este tipo de solicitaciones dinámicas. El análisis numérico mediante elementos finitos con integración explícita permite una aproximación suficiente a los efectos de la onda explosiva sobre pilares y forjados de estructuras reticuladas de hormigón. Los materiales recientemente implementados en LS-Dyna para hormigón como el CSCM [1], para elementos de continuo 3D, y la formulación que proporciona la debida compatibilidad con los elementos viga de acero dispuestos de forma segregada, permite estudiar de forma realista modelos detallados de pilares y forjados. Pero las limitaciones computacionales hacen inviable emplear estos métodos en estructuras completas. Como alternativa es posible usar modelos de elementos estructurales de vigas y láminas para el análisis de estas estructuras. Sin embargo es necesario un adecuado ajuste de parámetros y propiedades en estos modelos. Este trabajo muestra un método con en el que obtener modelos de elementos estructurales, elementos viga y lámina, usando modelos de material [2] adecuados para ellos, junto a un procedimiento para incluir la armadura de forma adecuada. Utilizando este método es posible representar con suficiente aproximación el comportamiento de modelos detallados realistas de forjados y pilares de estructuras reticuladas de hormigón frente a acciones explosivas, posibilitando el análisis de una estructura completa frente a explosión.
Resumo:
El proceso de construcción incide sobre el medio ambiente desde la obtención de los recursos que utiliza, hasta la optimización del uso de la energía y el desecho de materiales y sustancias de diversa índole. Es ingente que el sector de la construcción considere su responsabilidad al respecto y cuente con herramientas de fácil aplicación, como la que pretende ofrecer esta investigación, que le permita determinar el impacto que tendrá sobre el ambiente una determinada solución estructural. A lo largo del presente trabajo se realiza una revisión de los principales instrumentos de evaluación y de las diferentes metodologías creadas para la evaluación del impacto ambiental, en base a estas se realiza la propuesta de un índice para la evaluación de las estructuras, la cual sirve para realizar una comparación entre dos soluciones estructurales. Los objetivos de este trabajo son: hacer una aproximación cuantitativa a la evaluación del impacto ambiental ocasionado por una estructura ; motivar a los proyectistas a tomar en cuenta los factores ambientales al momento de proyectar, por medio del uso de instrumentos de fácil aplicación ; realizar una revisión bibliográfica de los diferentes sistemas que existen a nivel mundial para cuantificar el impacto ambiental, específicamente buscando los sistemas que cuantifiquen el impacto de la estructura, entendiendo como estructura el conjunto de elementos (vigas, losa o forjado, columnas o pilares y cimentación) que soportan la estructura ; desarrollar un instrumento mediante el cual se pueda evaluar de manera cuantitativa y sencilla el impacto ambiental de una estructura. Que a su vez sirva a los proyectistas de una base o instrumento para poder evaluar la eficiencia de una estructura propuesta en base al impacto ambiental de la misma.
Resumo:
En el campo de la ingeniería estructural como en otras ramas, es necesaria la calibración de modelos mediante soporte experimental debido a la complejidad que encierra el fenómeno que se intenta predecir. Las campañas experimentales llevadas a cabo por la comunidad científica a través de los años proporcionan información valiosa que puede ser empleada para la calibración y selección de modelos así como para la consolidación de modelos existentes. En el último caso, las técnicas empleadas para tal finalidad son fundamentalmente distintas a las de la selección de modelos (modelos ajustados con información experimental en común). Los códigos estructurales incluyen modelos de muy variado tipo que han ido consolidándose con la práctica. Con gran frecuencia sucede que tales modelos son diferentes en los referidos códigos aun cuando aborden el mismo objetivo. Tales diferencias son lógicas pues esos modelos no deben entenderse sino como elementos de un sistema más amplio de fiabilidad estructural que incluye todos los modelos utilizados así como el formato de seguridad establecido en cada uno de ellos. En el presente trabajo se realiza una comparación exhaustiva de modelos, empleando diferentes técnicas que permiten identificar patrones de comportamiento de los mismos. La metodología permite no sólo obtener una medida del ajuste y del poder predictivo de los modelos sino también del grado de conservadurismo. Los modelos analizados están relacionados con el fallo de vigas de hormigón reforzadas a flexión con materiales compuestos. La capacidad portante de estos elementos estructurales está frecuentemente condicionada por el despegue del refuerzo, el cual puede tener origen bien el extremo o en la zona de fisura de flexión o flexión-cortante.