19 resultados para Vanderbilt Cup Races
Resumo:
The analysis of the harmonic terms related to the rotational speed of a cup anemometer is a way to detect anomalies such as wear and tear, rotor non-symmetries (rotor damage) or problems at the output signal system. The research already done in this matter at the IDR/UPM Institute is now taken to cup anemometers working on the field. A 1-2 year testing campaign is being carried out in collaboration with Kintech Engineering. 2 Thies First Class Advanced installed at 58 m and 73 m height in a meteorology tower are constantly monitored. The results will be correlated to the anemometer performance evolution studied through several calibrations planned to be performed along the testing campaign.
Resumo:
The calibration results of one anemometer equipped with several rotors, varying their size, were analyzed. In each case, the 30-pulses pert turn output signal of the anemometer was studied using Fourier series decomposition and correlated with the anemometer factor (i.e., the anemometer transfer function). Also, a 3-cup analytical model was correlated to the data resulting from the wind tunnel measurements. Results indicate good correlation between the post-processed output signal and the working condition of the cup anemometer. This correlation was also reflected in the results from the proposed analytical model. With the present work the possibility of remotely checking cup anemometer status, indicating the presence of anomalies and, therefore, a decrease on the wind sensor reliability is revealed.
Resumo:
The cup anemometer rotor aerodynamics is analytically studied based on the aerodynamics of a single cup. The effect of the rotation on the aerodynamic force is included in the analytical model, together with the displacement of the aerodynamic center during one turn of the cup. The model can be fitted to the testing results, indicating the presence of both the aforementioned effects
Resumo:
The measurement deviations of cup anemometers are studied by analyzing the rotational speed of the rotor at steady state (constant wind speed). The differences of the measured rotational speed with respect to the averaged one based on complete turns of the rotor are produced by the harmonic terms of the rotational speed. Cup anemometer sampling periods include a certain number of complete turns of the rotor, plus one incomplete turn, the residuals from the harmonic terms integration within that incomplete turn (as part of the averaging process) being responsible for the mentioned deviations. The errors on the rotational speed due to the harmonic terms are studied analytically and then experimentally, with data from more than 500 calibrations performed on commercial anemometers.