35 resultados para Unrelated parallel machines
Resumo:
The Universidad Politécnica of Madrid (UPM) includes schools and faculties that were for engineering degrees, architecture and computer science, that are now in a quick EEES Bolonia Plan metamorphosis getting into degrees, masters and doctorate structures. They are focused towards action in machines, constructions, enterprises, that are subjected to machines, human and environment created risks. These are present in actions such as use loads, wind, snow, waves, flows, earthquakes, forces and effects in machines, vehicles behavior, chemical effects, and other environmental factors including effects of crops, cattle and beasts, forests, and varied essential economic and social disturbances. Emphasis is for authors in this session more about risks of natural origin, such as for hail, winds, snow or waves that are not exactly known a priori, but that are often considered with statistical expected distributions giving extreme values for convenient return periods. These distributions are known from measures in time, statistic of extremes and models about hazard scenarios and about responses of man made constructions or devices. In each engineering field theories were built about hazards scenarios and how to cover for important risks. Engineers must get that the systems they handle, such as vehicles, machines, firms or agro lands or forests, obtain production with enough safety for persons and with decent economic results in spite of risks. For that risks must be considered in planning, in realization and in operation, and safety margins must be taken but at a reasonable cost. That is a small level of risks will often remain, due to limitations in costs or because of due to strange hazards, and maybe they will be covered by insurance in cases such as in transport with cars, ships or aircrafts, in agro for hail, or for fire in houses or in forests. These and other decisions about quality, security for men or about business financial risks are sometimes considered with Decision Theories models, using often tools from Statistics or operational Research. The authors have done and are following field surveys about risk consideration in the careers in UPM, making deep analysis of curricula taking into account the new structures of degrees in the EEES Bolonia Plan, and they have considered the risk structures offered by diverse schools of Decision theories. That gives an aspect of the needs and uses, and recommendations about improving in the teaching about risk, that may include special subjects especially oriented for each career, school or faculty, so as to be recommended to be included into the curricula, including an elaboration and presentation format using a multi-criteria decision model.
Resumo:
This paper outlines an automatic computervision system for the identification of avena sterilis which is a special weed seed growing in cereal crops. The final goal is to reduce the quantity of herbicide to be sprayed as an important and necessary step for precision agriculture. So, only areas where the presence of weeds is important should be sprayed. The main problems for the identification of this kind of weed are its similar spectral signature with respect the crops and also its irregular distribution in the field. It has been designed a new strategy involving two processes: image segmentation and decision making. The image segmentation combines basic suitable image processing techniques in order to extract cells from the image as the low level units. Each cell is described by two area-based attributes measuring the relations among the crops and weeds. The decision making is based on the SupportVectorMachines and determines if a cell must be sprayed. The main findings of this paper are reflected in the combination of the segmentation and the SupportVectorMachines decision processes. Another important contribution of this approach is the minimum requirements of the system in terms of memory and computation power if compared with other previous works. The performance of the method is illustrated by comparative analysis against some existing strategies.
Resumo:
Compilation techniques such as those portrayed by the Warren Abstract Machine(WAM) have greatly improved the speed of execution of logic programs. The research presented herein is geared towards providing additional performance to logic programs through the use of parallelism, while preserving the conventional semantics of logic languages. Two áreas to which special attention is given are the preservation of sequential performance and storage efficiency, and the use of low overhead mechanisms for controlling parallel execution. Accordingly, the techniques used for supporting parallelism are efficient extensions of those which have brought high inferencing speeds to sequential implementations. At a lower level, special attention is also given to design and simulation detail and to the architectural implications of the execution model behavior. This paper offers an overview of the basic concepts and techniques used in the parallel design, simulation tools used, and some of the results obtained to date.
Resumo:
We present the design and implementation of the and-parallel component of ACE. ACE is a computational model for the full Prolog language that simultaneously exploits both or-parallelism and independent and-parallelism. A high performance implementation of the ACE model has been realized and its performance reported in this paper. We discuss how some of the standard problems which appear when implementing and-parallel systems are solved in ACE. We then propose a number of optimizations aimed at reducing the overheads and the increased memory consumption which occur in such systems when using previously proposed solutions. Finally, we present results from an implementation of ACE which includes the optimizations proposed. The results show that ACE exploits and-parallelism with high efficiency and high speedups. Furthermore, they also show that the proposed optimizations, which are applicable to many other and-parallel systems, significantly decrease memory consumption and increase speedups and absolute performance both in forwards execution and during backtracking.
Resumo:
We argüe that in order to exploit both Independent And- and Or-parallelism in Prolog programs there is advantage in recomputing some of the independent goals, as opposed to all their solutions being reused. We present an abstract model, called the Composition-Tree, for representing and-or parallelism in Prolog Programs. The Composition-tree closely mirrors sequential Prolog execution by recomputing some independent goals rather than fully re-using them. We also outline two environment representation techniques for And-Or parallel execution of full Prolog based on the Composition-tree model abstraction. We argüe that these techniques have advantages over earlier proposals for exploiting and-or parallelism in Prolog.
Resumo:
In recent years, applications in domains such as telecommunications, network security or large scale sensor networks showed the limits of the traditional store-then-process paradigm. In this context, Stream Processing Engines emerged as a candidate solution for all these applications demanding for high processing capacity with low processing latency guarantees. With Stream Processing Engines, data streams are not persisted but rather processed on the fly, producing results continuously. Current Stream Processing Engines, either centralized or distributed, do not scale with the input load due to single-node bottlenecks. Moreover, they are based on static configurations that lead to either under or over-provisioning. This Ph.D. thesis discusses StreamCloud, an elastic paralleldistributed stream processing engine that enables for processing of large data stream volumes. Stream- Cloud minimizes the distribution and parallelization overhead introducing novel techniques that split queries into parallel subqueries and allocate them to independent sets of nodes. Moreover, Stream- Cloud elastic and dynamic load balancing protocols enable for effective adjustment of resources depending on the incoming load. Together with the parallelization and elasticity techniques, Stream- Cloud defines a novel fault tolerance protocol that introduces minimal overhead while providing fast recovery. StreamCloud has been fully implemented and evaluated using several real word applications such as fraud detection applications or network analysis applications. The evaluation, conducted using a cluster with more than 300 cores, demonstrates the large scalability, the elasticity and fault tolerance effectiveness of StreamCloud. Resumen En los útimos años, aplicaciones en dominios tales como telecomunicaciones, seguridad de redes y redes de sensores de gran escala se han encontrado con múltiples limitaciones en el paradigma tradicional de bases de datos. En este contexto, los sistemas de procesamiento de flujos de datos han emergido como solución a estas aplicaciones que demandan una alta capacidad de procesamiento con una baja latencia. En los sistemas de procesamiento de flujos de datos, los datos no se persisten y luego se procesan, en su lugar los datos son procesados al vuelo en memoria produciendo resultados de forma continua. Los actuales sistemas de procesamiento de flujos de datos, tanto los centralizados, como los distribuidos, no escalan respecto a la carga de entrada del sistema debido a un cuello de botella producido por la concentración de flujos de datos completos en nodos individuales. Por otra parte, éstos están basados en configuraciones estáticas lo que conducen a un sobre o bajo aprovisionamiento. Esta tesis doctoral presenta StreamCloud, un sistema elástico paralelo-distribuido para el procesamiento de flujos de datos que es capaz de procesar grandes volúmenes de datos. StreamCloud minimiza el coste de distribución y paralelización por medio de una técnica novedosa la cual particiona las queries en subqueries paralelas repartiéndolas en subconjuntos de nodos independientes. Ademas, Stream- Cloud posee protocolos de elasticidad y equilibrado de carga que permiten una optimización de los recursos dependiendo de la carga del sistema. Unidos a los protocolos de paralelización y elasticidad, StreamCloud define un protocolo de tolerancia a fallos que introduce un coste mínimo mientras que proporciona una rápida recuperación. StreamCloud ha sido implementado y evaluado mediante varias aplicaciones del mundo real tales como aplicaciones de detección de fraude o aplicaciones de análisis del tráfico de red. La evaluación ha sido realizada en un cluster con más de 300 núcleos, demostrando la alta escalabilidad y la efectividad tanto de la elasticidad, como de la tolerancia a fallos de StreamCloud.
Resumo:
Abstract machines provide a certain separation between platformdependent and platform-independent concerns in compilation. Many of the differences between architectures are encapsulated in the speciflc abstract machine implementation and the bytecode is left largely architecture independent. Taking advantage of this fact, we present a framework for estimating upper and lower bounds on the execution times of logic programs running on a bytecode-based abstract machine. Our approach includes a one-time, programindependent proflling stage which calculates constants or functions bounding the execution time of each abstract machine instruction. Then, a compile-time cost estimation phase, using the instruction timing information, infers expressions giving platform-dependent upper and lower bounds on actual execution time as functions of input data sizes for each program. Working at the abstract machine level makes it possible to take into account low-level issues in new architectures and platforms by just reexecuting the calibration stage instead of having to tailor the analysis for each architecture and platform. Applications of such predicted execution times include debugging/veriflcation of time properties, certiflcation of time properties in mobile code, granularity control in parallel/distributed computing, and resource-oriented specialization.
Resumo:
Competitive abstract machines for Prolog are usually large, intricate, and incorpórate sophisticated optimizations. This makes them difñcult to code, optimize, and, especially, maintain and extend. This is partly due to the fact that efñciency considerations make it necessary to use low-level languages in their implementation. Writing the abstract machine (and ancillary code) in a higher-level language can help harness this inherent complexity. In this paper we show how the semantics of basic components of an efficient virtual machine for Prolog can be described using (a variant of) Prolog which retains much of its semantics. These descriptions are then compiled to C and assembled to build a complete bytecode emulator. Thanks to the high level of the language used and its closeness to Prolog the abstract machine descriptions can be manipulated using standard Prolog compilation and optimization techniques with relative ease. We also show how, by applying program transformations selectively, we obtain abstract machine implementations whose performance can match and even exceed that of highly-tuned, hand-crafted emulators.
Resumo:
It is generally recognized that information about the runtime cost of computations can be useful for a variety of applications, including program transformation, granularity control during parallel execution, and query optimization in deductive databases. Most of the work to date on compile-time cost estimation of logic programs has focused on the estimation of upper bounds on costs. However, in many applications, such as parallel implementations on distributed-memory machines, one would prefer to work with lower bounds instead. The problem with estimating lower bounds is that in general, it is necessary to account for the possibility of failure of head unification, leading to a trivial lower bound of 0. In this paper, we show how, given type and mode information about procedures in a logic program, it is possible to (semi-automatically) derive nontrivial lower bounds on their computational costs. We also discuss the cost analysis for the special and frequent case of divide-and-conquer programs and show how —as a pragmatic short-term solution —it may be possible to obtain useful results simply by identifying and treating divide-and-conquer programs specially.
Resumo:
Abstract is not available.
Resumo:
We present a technique to estimate accurate speedups for parallel logic programs with relative independence from characteristics of a given implementation or underlying parallel hardware. The proposed technique is based on gathering accurate data describing one execution at run-time, which is fed to a simulator. Alternative schedulings are then simulated and estimates computed for the corresponding speedups. A tool implementing the aforementioned techniques is presented, and its predictions are compared to the performance of real systems, showing good correlation.
Resumo:
Incorporating the possibility of attaching attributes to variables in a logic programming system has been shown to allow the addition of general constraint solving capabilities to it. This approach is very attractive in that by adding a few primitives any logic programming system can be turned into a generic constraint logic programming system in which constraint solving can be user deñned, and at source level - an extreme example of the "glass box" approach. In this paper we propose a different and novel use for the concept of attributed variables: developing a generic parallel/concurrent (constraint) logic programming system, using the same "glass box" flavor. We argüe that a system which implements attributed variables and a few additional primitives can be easily customized at source level to implement many of the languages and execution models of parallelism and concurrency currently proposed, in both shared memory and distributed systems. We illustrate this through examples and report on an implementation of our ideas.
Resumo:
In recent years a lot of research has been invested in parallel processing of numerical applications. However, parallel processing of Symbolic and AI applications has received less attention. This paper presents a system for parallel symbolic computitig, narned ACE, based on the logic programming paradigm. ACE is a computational model for the full Prolog language, capable of exploiting Or-parall< lism and Independent And-parallelism. In this paper vve focus on the implementation of the and-parallel part of the ACE system (ralled &ACE) on a shared memory multiprocessor, d< scribing its organization, some optimizations, and presenting some performance figures, proving the abilhy of &ACE to efficiently exploit parallelism.
Resumo:
In this paper we present a novel execution model for parallel implementation of logic programs which is capable of exploiting both independent and-parallelism and or-parallelism in an efficient way. This model extends the stack copying approach, which has been successfully applied in the Muse system to implement or-parallelism, by integrating it with proven techniques used to support independent and-parallelism. We show how all solutions to non-deterministic andparallel goals are found without repetitions. This is done through recomputation as in Prolog (and in various and-parallel systems, like &-Prolog and DDAS), i.e., solutions of and-parallel goals are not shared. We propose a scheme for the efficient management of the address space in a way that is compatible with the apparently incompatible requirements of both and- and or-parallelism. We also show how the full Prolog language, with all its extra-logical features, can be supported in our and-or parallel system so that its sequential semantics is preserved. The resulting system retains the advantages of both purely or-parallel systems as well as purely and-parallel systems. The stack copying scheme together with our proposed memory management scheme can also be used to implement models that combine dependent and-parallelism and or-parallelism, such as Andorra and Prometheus.
Resumo:
We informally discuss several issues related to the parallel execution of logic programming systems and concurrent logic programming systems, and their generalization to constraint programming. We propose a new view of these systems, based on a particular definition of parallelism. We argüe that, under this view, a large number of the actual systems and models can be explained through the application, at different levéis of granularity, of only a few basic principies: determinism, non-failure, independence (also referred to as stability), granularity, etc. Also, and based on the convergence of concepts that this view brings, we sketch a model for the implementation of several parallel constraint logic programming source languages and models based on a common, generic abstract machine and an intermedíate kernel language.