60 resultados para Ubiquitous and pervasive computing


Relevância:

100.00% 100.00%

Publicador:

Resumo:

How to create or integrate large Smart Spaces (considered as mash-ups of sensors and actuators) into the paradigm of ?Web of Things? has been the motivation of many recent works. A cutting-edge approach deals with developing and deploying web-enabled embedded devices with two major objectives: 1) to integrate sensor and actuator technologies into everyday objects, and 2) to allow a diversity of devices to plug to Internet. Currently, developers who want to use this Internet-oriented approach need have solid understanding about sensorial platforms and semantic technologies. In this paper we propose a Resource-Oriented and Ontology-Driven Development (ROOD) methodology, based on Model Driven Architecture (MDA), to facilitate to any developer the development and deployment of Smart Spaces. Early evaluations of the ROOD methodology have been successfully accomplished through a partial deployment of a Smart Hotel.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wireless Sensor Networks (WSNs) are spearheading the efforts taken to build and deploy systems aiming to accomplish the ultimate objectives of the Internet of Things. Due to the sensors WSNs nodes are provided with, and to their ubiquity and pervasive capabilities, these networks become extremely suitable for many applications that so-called conventional cabled or wireless networks are unable to handle. One of these still underdeveloped applications is monitoring physical parameters on a person. This is an especially interesting application regarding their age or activity, for any detected hazardous parameter can be notified not only to the monitored person as a warning, but also to any third party that may be helpful under critical circumstances, such as relatives or healthcare centers. We propose a system built to monitor a sportsman/woman during a workout session or performing a sport-related indoor activity. Sensors have been deployed by means of several nodes acting as the nodes of a WSN, along with a semantic middleware development used for hardware complexity abstraction purposes. The data extracted from the environment, combined with the information obtained from the user, will compose the basis of the services that can be obtained.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La informática se está convirtiendo en la quinta utilidad (gas, agua, luz, teléfono) en parte debido al impacto de Cloud Computing en las mayorías de las organizaciones. Este uso de informática es usada por cada vez más tipos de sistemas, incluidos Sistemas Críticos. Esto tiene un impacto en la complejidad internad y la fiabilidad de los sistemas de la organización y los que se ofrecen a los clientes. Este trabajo investiga el uso de Cloud Computing por sistemas críticos, centrándose en las dependencias y especialmente en la fiabilidad de estos sistemas. Se han presentado algunos ejemplos de su uso, y aunque su utilización en sistemas críticos no está extendido, se presenta cual puede llegar a ser su impacto. El objetivo de este trabajo es primero definir un modelo que pueda representar de una forma cuantitativa las interdependencias en fiabilidad y interdependencia para las organizaciones que utilicen estos sistemas, y aplicar este modelo en un sistema crítico del campo de sanidad y mostrar sus resultados. Los conceptos de “macro-dependability” y “micro-dependability” son introducidos en el modelo para la definición de interdependencia y para analizar la fiabilidad de sistemas que dependen de otros sistemas. ABSTRACT With the increasing utilization of Internet services and cloud computing by most organizations (both private and public), it is clear that computing is becoming the 5th utility (along with water, electricity, telephony and gas). These technologies are used for almost all types of systems, and the number is increasing, including Critical Infrastructure systems. Even if Critical Infrastructure systems appear not to rely directly on cloud services, there may be hidden inter-dependencies. This is true even for private cloud computing, which seems more secure and reliable. The critical systems can began in some cases with a clear and simple design, but evolved as described by Egan to "rafted" networks. Because they are usually controlled by one or few organizations, even when they are complex systems, their dependencies can be understood. The organization oversees and manages changes. These CI systems have been affected by the introduction of new ICT models like global communications, PCs and the Internet. Even virtualization took more time to be adopted by Critical systems, due to their strategic nature, but once that these technologies have been proven in other areas, at the end they are adopted as well, for different reasons such as costs. A new technology model is happening now based on some previous technologies (virtualization, distributing and utility computing, web and software services) that are offered in new ways and is called cloud computing. The organizations are migrating more services to the cloud; this will have impact in their internal complexity and in the reliability of the systems they are offering to the organization itself and their clients. Not always this added complexity and associated risks to their reliability are seen. As well, when two or more CI systems are interacting, the risks of one can affect the rest, sharing the risks. This work investigates the use of cloud computing by critical systems, and is focused in the dependencies and reliability of these systems. Some examples are presented together with the associated risks. A framework is introduced for analysing the dependability and resilience of a system that relies on cloud services and how to improve them. As part of the framework, the concepts of micro and macro dependability are introduced to explain the internal and external dependability on services supplied by an external cloud. A pharmacovigilance model system has been used for framework validation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes the design and application of the Atmospheric Evaluation and Research Integrated model for Spain (AERIS). Currently, AERIS can provide concentration profiles of NO2, O3, SO2, NH3, PM, as a response to emission variations of relevant sectors in Spain. Results are calculated using transfer matrices based on an air quality modelling system (AQMS) composed by the WRF (meteorology), SMOKE (emissions) and CMAQ (atmospheric-chemical processes) models. The AERIS outputs were statistically tested against the conventional AQMS and observations, revealing a good agreement in both cases. At the moment, integrated assessment in AERIS focuses only on the link between emissions and concentrations. The quantification of deposition, impacts (health, ecosystems) and costs will be introduced in the future. In conclusion, the main asset of AERIS is its accuracy in predicting air quality outcomes for different scenarios through a simple yet robust modelling framework, avoiding complex programming and long computing times.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human activity attracting a lot of research activity in several fields including the use of wireless sensors, positioning technologies and techniques, embedded computing, remote sensing and energy management among others. There are a number of applications where the results of those investigations can be applied, including ambient intelligence to support human activity, particularly the elderly and disabled people. Ambient intelligence is a new paradigm for the information and communications technologies where the electronic/digital environment takes care of the people presence and their needs, becoming an active, adaptive and responsive environment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Real-world experimentation facilities accelerate the development of Future Internet technologies and services, advance the market for smart infrastructures, and increase the effectiveness of business processes through the Internet. The federation of facilities fosters the experimentation and innovation with larger and more powerful environment, increases the number and variety of the offered services and brings forth possibilities for new experimentation scenarios. This paper introduces a management solution for cloud federation that automates service provisioning to the largest possible extent, relieves the developers from time-consuming configuration settings, and caters for real-time information of all information related to the whole lifecycle of the provisioned services. This is achieved by proposing solutions to achieve the seamless deployment of services across the federation and ability of services to span across different infrastructures of the federation, as well as monitoring of the resources and data which can be aggregated with a common structure, offered as an open ecosystem for innovation at the developers' disposal. This solution consists of several federation management tools and components that are part of the work on Cloud Federation conducted within XIFI project to build the federation of cloud infrastructures for the Future Internet Lab (FIWARE Lab). We present the design and implementation of the solution-concerned FIWARE Lab management tools and components that are deployed within a federation of 17 cloud infrastructures distributed across Europe.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

El extraordinario auge de las nuevas tecnologías de la información, el desarrollo de la Internet de las Cosas, el comercio electrónico, las redes sociales, la telefonía móvil y la computación y almacenamiento en la nube, han proporcionado grandes beneficios en todos los ámbitos de la sociedad. Junto a éstos, se presentan nuevos retos para la protección y privacidad de la información y su contenido, como la suplantación de personalidad y la pérdida de la confidencialidad e integridad de los documentos o las comunicaciones electrónicas. Este hecho puede verse agravado por la falta de una frontera clara que delimite el mundo personal del mundo laboral en cuanto al acceso de la información. En todos estos campos de la actividad personal y laboral, la Criptografía ha jugado un papel fundamental aportando las herramientas necesarias para garantizar la confidencialidad, integridad y disponibilidad tanto de la privacidad de los datos personales como de la información. Por otro lado, la Biometría ha propuesto y ofrecido diferentes técnicas con el fin de garantizar la autentificación de individuos a través del uso de determinadas características personales como las huellas dáctilares, el iris, la geometría de la mano, la voz, la forma de caminar, etc. Cada una de estas dos ciencias, Criptografía y Biometría, aportan soluciones a campos específicos de la protección de datos y autentificación de usuarios, que se verían enormemente potenciados si determinadas características de ambas ciencias se unieran con vistas a objetivos comunes. Por ello es imperativo intensificar la investigación en estos ámbitos combinando los algoritmos y primitivas matemáticas de la Criptografía con la Biometría para dar respuesta a la demanda creciente de nuevas soluciones más técnicas, seguras y fáciles de usar que potencien de modo simultáneo la protección de datos y la identificacíón de usuarios. En esta combinación el concepto de biometría cancelable ha supuesto una piedra angular en el proceso de autentificación e identificación de usuarios al proporcionar propiedades de revocación y cancelación a los ragos biométricos. La contribución de esta tesis se basa en el principal aspecto de la Biometría, es decir, la autentificación segura y eficiente de usuarios a través de sus rasgos biométricos, utilizando tres aproximaciones distintas: 1. Diseño de un esquema criptobiométrico borroso que implemente los principios de la biometría cancelable para identificar usuarios lidiando con los problemas acaecidos de la variabilidad intra e inter-usuarios. 2. Diseño de una nueva función hash que preserva la similitud (SPHF por sus siglas en inglés). Actualmente estas funciones se usan en el campo del análisis forense digital con el objetivo de buscar similitudes en el contenido de archivos distintos pero similares de modo que se pueda precisar hasta qué punto estos archivos pudieran ser considerados iguales. La función definida en este trabajo de investigación, además de mejorar los resultados de las principales funciones desarrolladas hasta el momento, intenta extender su uso a la comparación entre patrones de iris. 3. Desarrollando un nuevo mecanismo de comparación de patrones de iris que considera tales patrones como si fueran señales para compararlos posteriormente utilizando la transformada de Walsh-Hadarmard. Los resultados obtenidos son excelentes teniendo en cuenta los requerimientos de seguridad y privacidad mencionados anteriormente. Cada uno de los tres esquemas diseñados han sido implementados para poder realizar experimentos y probar su eficacia operativa en escenarios que simulan situaciones reales: El esquema criptobiométrico borroso y la función SPHF han sido implementados en lenguaje Java mientras que el proceso basado en la transformada de Walsh-Hadamard en Matlab. En los experimentos se ha utilizado una base de datos de imágenes de iris (CASIA) para simular una población de usuarios del sistema. En el caso particular de la función de SPHF, además se han realizado experimentos para comprobar su utilidad en el campo de análisis forense comparando archivos e imágenes con contenido similar y distinto. En este sentido, para cada uno de los esquemas se han calculado los ratios de falso negativo y falso positivo. ABSTRACT The extraordinary increase of new information technologies, the development of Internet of Things, the electronic commerce, the social networks, mobile or smart telephony and cloud computing and storage, have provided great benefits in all areas of society. Besides this fact, there are new challenges for the protection and privacy of information and its content, such as the loss of confidentiality and integrity of electronic documents and communications. This is exarcebated by the lack of a clear boundary between the personal world and the business world as their differences are becoming narrower. In both worlds, i.e the personal and the business one, Cryptography has played a key role by providing the necessary tools to ensure the confidentiality, integrity and availability both of the privacy of the personal data and information. On the other hand, Biometrics has offered and proposed different techniques with the aim to assure the authentication of individuals through their biometric traits, such as fingerprints, iris, hand geometry, voice, gait, etc. Each of these sciences, Cryptography and Biometrics, provides tools to specific problems of the data protection and user authentication, which would be widely strengthen if determined characteristics of both sciences would be combined in order to achieve common objectives. Therefore, it is imperative to intensify the research in this area by combining the basics mathematical algorithms and primitives of Cryptography with Biometrics to meet the growing demand for more secure and usability techniques which would improve the data protection and the user authentication. In this combination, the use of cancelable biometrics makes a cornerstone in the user authentication and identification process since it provides revocable or cancelation properties to the biometric traits. The contributions in this thesis involve the main aspect of Biometrics, i.e. the secure and efficient authentication of users through their biometric templates, considered from three different approaches. The first one is designing a fuzzy crypto-biometric scheme using the cancelable biometric principles to take advantage of the fuzziness of the biometric templates at the same time that it deals with the intra- and inter-user variability among users without compromising the biometric templates extracted from the legitimate users. The second one is designing a new Similarity Preserving Hash Function (SPHF), currently widely used in the Digital Forensics field to find similarities among different files to calculate their similarity level. The function designed in this research work, besides the fact of improving the results of the two main functions of this field currently in place, it tries to expand its use to the iris template comparison. Finally, the last approach of this thesis is developing a new mechanism of handling the iris templates, considering them as signals, to use the Walsh-Hadamard transform (complemented with three other algorithms) to compare them. The results obtained are excellent taking into account the security and privacy requirements mentioned previously. Every one of the three schemes designed have been implemented to test their operational efficacy in situations that simulate real scenarios: The fuzzy crypto-biometric scheme and the SPHF have been implemented in Java language, while the process based on the Walsh-Hadamard transform in Matlab. The experiments have been performed using a database of iris templates (CASIA-IrisV2) to simulate a user population. The case of the new SPHF designed is special since previous to be applied i to the Biometrics field, it has been also tested to determine its applicability in the Digital Forensic field comparing similar and dissimilar files and images. The ratios of efficiency and effectiveness regarding user authentication, i.e. False Non Match and False Match Rate, for the schemes designed have been calculated with different parameters and cases to analyse their behaviour.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Los sistemas empotrados han sido concebidos tradicionalmente como sistemas de procesamiento específicos que realizan una tarea fija durante toda su vida útil. Para cumplir con requisitos estrictos de coste, tamaño y peso, el equipo de diseño debe optimizar su funcionamiento para condiciones muy específicas. Sin embargo, la demanda de mayor versatilidad, un funcionamiento más inteligente y, en definitiva, una mayor capacidad de procesamiento comenzaron a chocar con estas limitaciones, agravado por la incertidumbre asociada a entornos de operación cada vez más dinámicos donde comenzaban a ser desplegados progresivamente. Esto trajo como resultado una necesidad creciente de que los sistemas pudieran responder por si solos a eventos inesperados en tiempo diseño tales como: cambios en las características de los datos de entrada y el entorno del sistema en general; cambios en la propia plataforma de cómputo, por ejemplo debido a fallos o defectos de fabricación; y cambios en las propias especificaciones funcionales causados por unos objetivos del sistema dinámicos y cambiantes. Como consecuencia, la complejidad del sistema aumenta, pero a cambio se habilita progresivamente una capacidad de adaptación autónoma sin intervención humana a lo largo de la vida útil, permitiendo que tomen sus propias decisiones en tiempo de ejecución. Éstos sistemas se conocen, en general, como sistemas auto-adaptativos y tienen, entre otras características, las de auto-configuración, auto-optimización y auto-reparación. Típicamente, la parte soft de un sistema es mayoritariamente la única utilizada para proporcionar algunas capacidades de adaptación a un sistema. Sin embargo, la proporción rendimiento/potencia en dispositivos software como microprocesadores en muchas ocasiones no es adecuada para sistemas empotrados. En este escenario, el aumento resultante en la complejidad de las aplicaciones está siendo abordado parcialmente mediante un aumento en la complejidad de los dispositivos en forma de multi/many-cores; pero desafortunadamente, esto hace que el consumo de potencia también aumente. Además, la mejora en metodologías de diseño no ha sido acorde como para poder utilizar toda la capacidad de cómputo disponible proporcionada por los núcleos. Por todo ello, no se están satisfaciendo adecuadamente las demandas de cómputo que imponen las nuevas aplicaciones. La solución tradicional para mejorar la proporción rendimiento/potencia ha sido el cambio a unas especificaciones hardware, principalmente usando ASICs. Sin embargo, los costes de un ASIC son altamente prohibitivos excepto en algunos casos de producción en masa y además la naturaleza estática de su estructura complica la solución a las necesidades de adaptación. Los avances en tecnologías de fabricación han hecho que la FPGA, una vez lenta y pequeña, usada como glue logic en sistemas mayores, haya crecido hasta convertirse en un dispositivo de cómputo reconfigurable de gran potencia, con una cantidad enorme de recursos lógicos computacionales y cores hardware empotrados de procesamiento de señal y de propósito general. Sus capacidades de reconfiguración han permitido combinar la flexibilidad propia del software con el rendimiento del procesamiento en hardware, lo que tiene la potencialidad de provocar un cambio de paradigma en arquitectura de computadores, pues el hardware no puede ya ser considerado más como estático. El motivo es que como en el caso de las FPGAs basadas en tecnología SRAM, la reconfiguración parcial dinámica (DPR, Dynamic Partial Reconfiguration) es posible. Esto significa que se puede modificar (reconfigurar) un subconjunto de los recursos computacionales en tiempo de ejecución mientras el resto permanecen activos. Además, este proceso de reconfiguración puede ser ejecutado internamente por el propio dispositivo. El avance tecnológico en dispositivos hardware reconfigurables se encuentra recogido bajo el campo conocido como Computación Reconfigurable (RC, Reconfigurable Computing). Uno de los campos de aplicación más exóticos y menos convencionales que ha posibilitado la computación reconfigurable es el conocido como Hardware Evolutivo (EHW, Evolvable Hardware), en el cual se encuentra enmarcada esta tesis. La idea principal del concepto consiste en convertir hardware que es adaptable a través de reconfiguración en una entidad evolutiva sujeta a las fuerzas de un proceso evolutivo inspirado en el de las especies biológicas naturales, que guía la dirección del cambio. Es una aplicación más del campo de la Computación Evolutiva (EC, Evolutionary Computation), que comprende una serie de algoritmos de optimización global conocidos como Algoritmos Evolutivos (EA, Evolutionary Algorithms), y que son considerados como algoritmos universales de resolución de problemas. En analogía al proceso biológico de la evolución, en el hardware evolutivo el sujeto de la evolución es una población de circuitos que intenta adaptarse a su entorno mediante una adecuación progresiva generación tras generación. Los individuos pasan a ser configuraciones de circuitos en forma de bitstreams caracterizados por descripciones de circuitos reconfigurables. Seleccionando aquellos que se comportan mejor, es decir, que tienen una mejor adecuación (o fitness) después de ser evaluados, y usándolos como padres de la siguiente generación, el algoritmo evolutivo crea una nueva población hija usando operadores genéticos como la mutación y la recombinación. Según se van sucediendo generaciones, se espera que la población en conjunto se aproxime a la solución óptima al problema de encontrar una configuración del circuito adecuada que satisfaga las especificaciones. El estado de la tecnología de reconfiguración después de que la familia de FPGAs XC6200 de Xilinx fuera retirada y reemplazada por las familias Virtex a finales de los 90, supuso un gran obstáculo para el avance en hardware evolutivo; formatos de bitstream cerrados (no conocidos públicamente); dependencia de herramientas del fabricante con soporte limitado de DPR; una velocidad de reconfiguración lenta; y el hecho de que modificaciones aleatorias del bitstream pudieran resultar peligrosas para la integridad del dispositivo, son algunas de estas razones. Sin embargo, una propuesta a principios de los años 2000 permitió mantener la investigación en el campo mientras la tecnología de DPR continuaba madurando, el Circuito Virtual Reconfigurable (VRC, Virtual Reconfigurable Circuit). En esencia, un VRC en una FPGA es una capa virtual que actúa como un circuito reconfigurable de aplicación específica sobre la estructura nativa de la FPGA que reduce la complejidad del proceso reconfiguración y aumenta su velocidad (comparada con la reconfiguración nativa). Es un array de nodos computacionales especificados usando descripciones HDL estándar que define recursos reconfigurables ad-hoc: multiplexores de rutado y un conjunto de elementos de procesamiento configurables, cada uno de los cuales tiene implementadas todas las funciones requeridas, que pueden seleccionarse a través de multiplexores tal y como ocurre en una ALU de un microprocesador. Un registro grande actúa como memoria de configuración, por lo que la reconfiguración del VRC es muy rápida ya que tan sólo implica la escritura de este registro, el cual controla las señales de selección del conjunto de multiplexores. Sin embargo, esta capa virtual provoca: un incremento de área debido a la implementación simultánea de cada función en cada nodo del array más los multiplexores y un aumento del retardo debido a los multiplexores, reduciendo la frecuencia de funcionamiento máxima. La naturaleza del hardware evolutivo, capaz de optimizar su propio comportamiento computacional, le convierten en un buen candidato para avanzar en la investigación sobre sistemas auto-adaptativos. Combinar un sustrato de cómputo auto-reconfigurable capaz de ser modificado dinámicamente en tiempo de ejecución con un algoritmo empotrado que proporcione una dirección de cambio, puede ayudar a satisfacer los requisitos de adaptación autónoma de sistemas empotrados basados en FPGA. La propuesta principal de esta tesis está por tanto dirigida a contribuir a la auto-adaptación del hardware de procesamiento de sistemas empotrados basados en FPGA mediante hardware evolutivo. Esto se ha abordado considerando que el comportamiento computacional de un sistema puede ser modificado cambiando cualquiera de sus dos partes constitutivas: una estructura hard subyacente y un conjunto de parámetros soft. De esta distinción, se derivan dos lineas de trabajo. Por un lado, auto-adaptación paramétrica, y por otro auto-adaptación estructural. El objetivo perseguido en el caso de la auto-adaptación paramétrica es la implementación de técnicas de optimización evolutiva complejas en sistemas empotrados con recursos limitados para la adaptación paramétrica online de circuitos de procesamiento de señal. La aplicación seleccionada como prueba de concepto es la optimización para tipos muy específicos de imágenes de los coeficientes de los filtros de transformadas wavelet discretas (DWT, DiscreteWavelet Transform), orientada a la compresión de imágenes. Por tanto, el objetivo requerido de la evolución es una compresión adaptativa y más eficiente comparada con los procedimientos estándar. El principal reto radica en reducir la necesidad de recursos de supercomputación para el proceso de optimización propuesto en trabajos previos, de modo que se adecúe para la ejecución en sistemas empotrados. En cuanto a la auto-adaptación estructural, el objetivo de la tesis es la implementación de circuitos auto-adaptativos en sistemas evolutivos basados en FPGA mediante un uso eficiente de sus capacidades de reconfiguración nativas. En este caso, la prueba de concepto es la evolución de tareas de procesamiento de imagen tales como el filtrado de tipos desconocidos y cambiantes de ruido y la detección de bordes en la imagen. En general, el objetivo es la evolución en tiempo de ejecución de tareas de procesamiento de imagen desconocidas en tiempo de diseño (dentro de un cierto grado de complejidad). En este caso, el objetivo de la propuesta es la incorporación de DPR en EHW para evolucionar la arquitectura de un array sistólico adaptable mediante reconfiguración cuya capacidad de evolución no había sido estudiada previamente. Para conseguir los dos objetivos mencionados, esta tesis propone originalmente una plataforma evolutiva que integra un motor de adaptación (AE, Adaptation Engine), un motor de reconfiguración (RE, Reconfiguration Engine) y un motor computacional (CE, Computing Engine) adaptable. El el caso de adaptación paramétrica, la plataforma propuesta está caracterizada por: • un CE caracterizado por un núcleo de procesamiento hardware de DWT adaptable mediante registros reconfigurables que contienen los coeficientes de los filtros wavelet • un algoritmo evolutivo como AE que busca filtros wavelet candidatos a través de un proceso de optimización paramétrica desarrollado específicamente para sistemas caracterizados por recursos de procesamiento limitados • un nuevo operador de mutación simplificado para el algoritmo evolutivo utilizado, que junto con un mecanismo de evaluación rápida de filtros wavelet candidatos derivado de la literatura actual, asegura la viabilidad de la búsqueda evolutiva asociada a la adaptación de wavelets. En el caso de adaptación estructural, la plataforma propuesta toma la forma de: • un CE basado en una plantilla de array sistólico reconfigurable de 2 dimensiones compuesto de nodos de procesamiento reconfigurables • un algoritmo evolutivo como AE que busca configuraciones candidatas del array usando un conjunto de funcionalidades de procesamiento para los nodos disponible en una biblioteca accesible en tiempo de ejecución • un RE hardware que explota la capacidad de reconfiguración nativa de las FPGAs haciendo un uso eficiente de los recursos reconfigurables del dispositivo para cambiar el comportamiento del CE en tiempo de ejecución • una biblioteca de elementos de procesamiento reconfigurables caracterizada por bitstreams parciales independientes de la posición, usados como el conjunto de configuraciones disponibles para los nodos de procesamiento del array Las contribuciones principales de esta tesis se pueden resumir en la siguiente lista: • Una plataforma evolutiva basada en FPGA para la auto-adaptación paramétrica y estructural de sistemas empotrados compuesta por un motor computacional (CE), un motor de adaptación (AE) evolutivo y un motor de reconfiguración (RE). Esta plataforma se ha desarrollado y particularizado para los casos de auto-adaptación paramétrica y estructural. • En cuanto a la auto-adaptación paramétrica, las contribuciones principales son: – Un motor computacional adaptable mediante registros que permite la adaptación paramétrica de los coeficientes de una implementación hardware adaptativa de un núcleo de DWT. – Un motor de adaptación basado en un algoritmo evolutivo desarrollado específicamente para optimización numérica, aplicada a los coeficientes de filtros wavelet en sistemas empotrados con recursos limitados. – Un núcleo IP de DWT auto-adaptativo en tiempo de ejecución para sistemas empotrados que permite la optimización online del rendimiento de la transformada para compresión de imágenes en entornos específicos de despliegue, caracterizados por tipos diferentes de señal de entrada. – Un modelo software y una implementación hardware de una herramienta para la construcción evolutiva automática de transformadas wavelet específicas. • Por último, en cuanto a la auto-adaptación estructural, las contribuciones principales son: – Un motor computacional adaptable mediante reconfiguración nativa de FPGAs caracterizado por una plantilla de array sistólico en dos dimensiones de nodos de procesamiento reconfigurables. Es posible mapear diferentes tareas de cómputo en el array usando una biblioteca de elementos sencillos de procesamiento reconfigurables. – Definición de una biblioteca de elementos de procesamiento apropiada para la síntesis autónoma en tiempo de ejecución de diferentes tareas de procesamiento de imagen. – Incorporación eficiente de la reconfiguración parcial dinámica (DPR) en sistemas de hardware evolutivo, superando los principales inconvenientes de propuestas previas como los circuitos reconfigurables virtuales (VRCs). En este trabajo también se comparan originalmente los detalles de implementación de ambas propuestas. – Una plataforma tolerante a fallos, auto-curativa, que permite la recuperación funcional online en entornos peligrosos. La plataforma ha sido caracterizada desde una perspectiva de tolerancia a fallos: se proponen modelos de fallo a nivel de CLB y de elemento de procesamiento, y usando el motor de reconfiguración, se hace un análisis sistemático de fallos para un fallo en cada elemento de procesamiento y para dos fallos acumulados. – Una plataforma con calidad de filtrado dinámica que permite la adaptación online a tipos de ruido diferentes y diferentes comportamientos computacionales teniendo en cuenta los recursos de procesamiento disponibles. Por un lado, se evolucionan filtros con comportamientos no destructivos, que permiten esquemas de filtrado en cascada escalables; y por otro, también se evolucionan filtros escalables teniendo en cuenta requisitos computacionales de filtrado cambiantes dinámicamente. Este documento está organizado en cuatro partes y nueve capítulos. La primera parte contiene el capítulo 1, una introducción y motivación sobre este trabajo de tesis. A continuación, el marco de referencia en el que se enmarca esta tesis se analiza en la segunda parte: el capítulo 2 contiene una introducción a los conceptos de auto-adaptación y computación autonómica (autonomic computing) como un campo de investigación más general que el muy específico de este trabajo; el capítulo 3 introduce la computación evolutiva como la técnica para dirigir la adaptación; el capítulo 4 analiza las plataformas de computación reconfigurables como la tecnología para albergar hardware auto-adaptativo; y finalmente, el capítulo 5 define, clasifica y hace un sondeo del campo del hardware evolutivo. Seguidamente, la tercera parte de este trabajo contiene la propuesta, desarrollo y resultados obtenidos: mientras que el capítulo 6 contiene una declaración de los objetivos de la tesis y la descripción de la propuesta en su conjunto, los capítulos 7 y 8 abordan la auto-adaptación paramétrica y estructural, respectivamente. Finalmente, el capítulo 9 de la parte 4 concluye el trabajo y describe caminos de investigación futuros. ABSTRACT Embedded systems have traditionally been conceived to be specific-purpose computers with one, fixed computational task for their whole lifetime. Stringent requirements in terms of cost, size and weight forced designers to highly optimise their operation for very specific conditions. However, demands for versatility, more intelligent behaviour and, in summary, an increased computing capability began to clash with these limitations, intensified by the uncertainty associated to the more dynamic operating environments where they were progressively being deployed. This brought as a result an increasing need for systems to respond by themselves to unexpected events at design time, such as: changes in input data characteristics and system environment in general; changes in the computing platform itself, e.g., due to faults and fabrication defects; and changes in functional specifications caused by dynamically changing system objectives. As a consequence, systems complexity is increasing, but in turn, autonomous lifetime adaptation without human intervention is being progressively enabled, allowing them to take their own decisions at run-time. This type of systems is known, in general, as selfadaptive, and are able, among others, of self-configuration, self-optimisation and self-repair. Traditionally, the soft part of a system has mostly been so far the only place to provide systems with some degree of adaptation capabilities. However, the performance to power ratios of software driven devices like microprocessors are not adequate for embedded systems in many situations. In this scenario, the resulting rise in applications complexity is being partly addressed by rising devices complexity in the form of multi and many core devices; but sadly, this keeps on increasing power consumption. Besides, design methodologies have not been improved accordingly to completely leverage the available computational power from all these cores. Altogether, these factors make that the computing demands new applications pose are not being wholly satisfied. The traditional solution to improve performance to power ratios has been the switch to hardware driven specifications, mainly using ASICs. However, their costs are highly prohibitive except for some mass production cases and besidesthe static nature of its structure complicates the solution to the adaptation needs. The advancements in fabrication technologies have made that the once slow, small FPGA used as glue logic in bigger systems, had grown to be a very powerful, reconfigurable computing device with a vast amount of computational logic resources and embedded, hardened signal and general purpose processing cores. Its reconfiguration capabilities have enabled software-like flexibility to be combined with hardware-like computing performance, which has the potential to cause a paradigm shift in computer architecture since hardware cannot be considered as static anymore. This is so, since, as is the case with SRAMbased FPGAs, Dynamic Partial Reconfiguration (DPR) is possible. This means that subsets of the FPGA computational resources can now be changed (reconfigured) at run-time while the rest remains active. Besides, this reconfiguration process can be triggered internally by the device itself. This technological boost in reconfigurable hardware devices is actually covered under the field known as Reconfigurable Computing. One of the most exotic fields of application that Reconfigurable Computing has enabled is the known as Evolvable Hardware (EHW), in which this dissertation is framed. The main idea behind the concept is turning hardware that is adaptable through reconfiguration into an evolvable entity subject to the forces of an evolutionary process, inspired by that of natural, biological species, that guides the direction of change. It is yet another application of the field of Evolutionary Computation (EC), which comprises a set of global optimisation algorithms known as Evolutionary Algorithms (EAs), considered as universal problem solvers. In analogy to the biological process of evolution, in EHW the subject of evolution is a population of circuits that tries to get adapted to its surrounding environment by progressively getting better fitted to it generation after generation. Individuals become circuit configurations representing bitstreams that feature reconfigurable circuit descriptions. By selecting those that behave better, i.e., with a higher fitness value after being evaluated, and using them as parents of the following generation, the EA creates a new offspring population by using so called genetic operators like mutation and recombination. As generations succeed one another, the whole population is expected to approach to the optimum solution to the problem of finding an adequate circuit configuration that fulfils system objectives. The state of reconfiguration technology after Xilinx XC6200 FPGA family was discontinued and replaced by Virtex families in the late 90s, was a major obstacle for advancements in EHW; closed (non publicly known) bitstream formats; dependence on manufacturer tools with highly limiting support of DPR; slow speed of reconfiguration; and random bitstream modifications being potentially hazardous for device integrity, are some of these reasons. However, a proposal in the first 2000s allowed to keep investigating in this field while DPR technology kept maturing, the Virtual Reconfigurable Circuit (VRC). In essence, a VRC in an FPGA is a virtual layer acting as an application specific reconfigurable circuit on top of an FPGA fabric that reduces the complexity of the reconfiguration process and increases its speed (compared to native reconfiguration). It is an array of computational nodes specified using standard HDL descriptions that define ad-hoc reconfigurable resources; routing multiplexers and a set of configurable processing elements, each one containing all the required functions, which are selectable through functionality multiplexers as in microprocessor ALUs. A large register acts as configuration memory, so VRC reconfiguration is very fast given it only involves writing this register, which drives the selection signals of the set of multiplexers. However, large overheads are introduced by this virtual layer; an area overhead due to the simultaneous implementation of every function in every node of the array plus the multiplexers, and a delay overhead due to the multiplexers, which also reduces maximum frequency of operation. The very nature of Evolvable Hardware, able to optimise its own computational behaviour, makes it a good candidate to advance research in self-adaptive systems. Combining a selfreconfigurable computing substrate able to be dynamically changed at run-time with an embedded algorithm that provides a direction for change, can help fulfilling requirements for autonomous lifetime adaptation of FPGA-based embedded systems. The main proposal of this thesis is hence directed to contribute to autonomous self-adaptation of the underlying computational hardware of FPGA-based embedded systems by means of Evolvable Hardware. This is tackled by considering that the computational behaviour of a system can be modified by changing any of its two constituent parts: an underlying hard structure and a set of soft parameters. Two main lines of work derive from this distinction. On one side, parametric self-adaptation and, on the other side, structural self-adaptation. The goal pursued in the case of parametric self-adaptation is the implementation of complex evolutionary optimisation techniques in resource constrained embedded systems for online parameter adaptation of signal processing circuits. The application selected as proof of concept is the optimisation of Discrete Wavelet Transforms (DWT) filters coefficients for very specific types of images, oriented to image compression. Hence, adaptive and improved compression efficiency, as compared to standard techniques, is the required goal of evolution. The main quest lies in reducing the supercomputing resources reported in previous works for the optimisation process in order to make it suitable for embedded systems. Regarding structural self-adaptation, the thesis goal is the implementation of self-adaptive circuits in FPGA-based evolvable systems through an efficient use of native reconfiguration capabilities. In this case, evolution of image processing tasks such as filtering of unknown and changing types of noise and edge detection are the selected proofs of concept. In general, evolving unknown image processing behaviours (within a certain complexity range) at design time is the required goal. In this case, the mission of the proposal is the incorporation of DPR in EHW to evolve a systolic array architecture adaptable through reconfiguration whose evolvability had not been previously checked. In order to achieve the two stated goals, this thesis originally proposes an evolvable platform that integrates an Adaptation Engine (AE), a Reconfiguration Engine (RE) and an adaptable Computing Engine (CE). In the case of parametric adaptation, the proposed platform is characterised by: • a CE featuring a DWT hardware processing core adaptable through reconfigurable registers that holds wavelet filters coefficients • an evolutionary algorithm as AE that searches for candidate wavelet filters through a parametric optimisation process specifically developed for systems featured by scarce computing resources • a new, simplified mutation operator for the selected EA, that together with a fast evaluation mechanism of candidate wavelet filters derived from existing literature, assures the feasibility of the evolutionary search involved in wavelets adaptation In the case of structural adaptation, the platform proposal takes the form of: • a CE based on a reconfigurable 2D systolic array template composed of reconfigurable processing nodes • an evolutionary algorithm as AE that searches for candidate configurations of the array using a set of computational functionalities for the nodes available in a run time accessible library • a hardware RE that exploits native DPR capabilities of FPGAs and makes an efficient use of the available reconfigurable resources of the device to change the behaviour of the CE at run time • a library of reconfigurable processing elements featured by position-independent partial bitstreams used as the set of available configurations for the processing nodes of the array Main contributions of this thesis can be summarised in the following list. • An FPGA-based evolvable platform for parametric and structural self-adaptation of embedded systems composed of a Computing Engine, an evolutionary Adaptation Engine and a Reconfiguration Engine. This platform is further developed and tailored for both parametric and structural self-adaptation. • Regarding parametric self-adaptation, main contributions are: – A CE adaptable through reconfigurable registers that enables parametric adaptation of the coefficients of an adaptive hardware implementation of a DWT core. – An AE based on an Evolutionary Algorithm specifically developed for numerical optimisation applied to wavelet filter coefficients in resource constrained embedded systems. – A run-time self-adaptive DWT IP core for embedded systems that allows for online optimisation of transform performance for image compression for specific deployment environments characterised by different types of input signals. – A software model and hardware implementation of a tool for the automatic, evolutionary construction of custom wavelet transforms. • Lastly, regarding structural self-adaptation, main contributions are: – A CE adaptable through native FPGA fabric reconfiguration featured by a two dimensional systolic array template of reconfigurable processing nodes. Different processing behaviours can be automatically mapped in the array by using a library of simple reconfigurable processing elements. – Definition of a library of such processing elements suited for autonomous runtime synthesis of different image processing tasks. – Efficient incorporation of DPR in EHW systems, overcoming main drawbacks from the previous approach of virtual reconfigurable circuits. Implementation details for both approaches are also originally compared in this work. – A fault tolerant, self-healing platform that enables online functional recovery in hazardous environments. The platform has been characterised from a fault tolerance perspective: fault models at FPGA CLB level and processing elements level are proposed, and using the RE, a systematic fault analysis for one fault in every processing element and for two accumulated faults is done. – A dynamic filtering quality platform that permits on-line adaptation to different types of noise and different computing behaviours considering the available computing resources. On one side, non-destructive filters are evolved, enabling scalable cascaded filtering schemes; and on the other, size-scalable filters are also evolved considering dynamically changing computational filtering requirements. This dissertation is organized in four parts and nine chapters. First part contains chapter 1, the introduction to and motivation of this PhD work. Following, the reference framework in which this dissertation is framed is analysed in the second part: chapter 2 features an introduction to the notions of self-adaptation and autonomic computing as a more general research field to the very specific one of this work; chapter 3 introduces evolutionary computation as the technique to drive adaptation; chapter 4 analyses platforms for reconfigurable computing as the technology to hold self-adaptive hardware; and finally chapter 5 defines, classifies and surveys the field of Evolvable Hardware. Third part of the work follows, which contains the proposal, development and results obtained: while chapter 6 contains an statement of the thesis goals and the description of the proposal as a whole, chapters 7 and 8 address parametric and structural self-adaptation, respectively. Finally, chapter 9 in part 4 concludes the work and describes future research paths.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La computación ubicua está extendiendo su aplicación desde entornos específicos hacia el uso cotidiano; el Internet de las cosas (IoT, en inglés) es el ejemplo más brillante de su aplicación y de la complejidad intrínseca que tiene, en comparación con el clásico desarrollo de aplicaciones. La principal característica que diferencia la computación ubicua de los otros tipos está en como se emplea la información de contexto. Las aplicaciones clásicas no usan en absoluto la información de contexto o usan sólo una pequeña parte de ella, integrándola de una forma ad hoc con una implementación específica para la aplicación. La motivación de este tratamiento particular se tiene que buscar en la dificultad de compartir el contexto con otras aplicaciones. En realidad lo que es información de contexto depende del tipo de aplicación: por poner un ejemplo, para un editor de imágenes, la imagen es la información y sus metadatos, tales como la hora de grabación o los ajustes de la cámara, son el contexto, mientras que para el sistema de ficheros la imagen junto con los ajustes de cámara son la información, y el contexto es representado por los metadatos externos al fichero como la fecha de modificación o la de último acceso. Esto significa que es difícil compartir la información de contexto, y la presencia de un middleware de comunicación que soporte el contexto de forma explícita simplifica el desarrollo de aplicaciones para computación ubicua. Al mismo tiempo el uso del contexto no tiene que ser obligatorio, porque si no se perdería la compatibilidad con las aplicaciones que no lo usan, convirtiendo así dicho middleware en un middleware de contexto. SilboPS, que es nuestra implementación de un sistema publicador/subscriptor basado en contenido e inspirado en SIENA [11, 9], resuelve dicho problema extendiendo el paradigma con dos elementos: el Contexto y la Función de Contexto. El contexto representa la información contextual propiamente dicha del mensaje por enviar o aquella requerida por el subscriptor para recibir notificaciones, mientras la función de contexto se evalúa usando el contexto del publicador y del subscriptor. Esto permite desacoplar la lógica de gestión del contexto de aquella de la función de contexto, incrementando de esta forma la flexibilidad de la comunicación entre varias aplicaciones. De hecho, al utilizar por defecto un contexto vacío, las aplicaciones clásicas y las que manejan el contexto pueden usar el mismo SilboPS, resolviendo de esta forma la incompatibilidad entre las dos categorías. En cualquier caso la posible incompatibilidad semántica sigue existiendo ya que depende de la interpretación que cada aplicación hace de los datos y no puede ser solucionada por una tercera parte agnóstica. El entorno IoT conlleva retos no sólo de contexto, sino también de escalabilidad. La cantidad de sensores, el volumen de datos que producen y la cantidad de aplicaciones que podrían estar interesadas en manipular esos datos está en continuo aumento. Hoy en día la respuesta a esa necesidad es la computación en la nube, pero requiere que las aplicaciones sean no sólo capaces de escalar, sino de hacerlo de forma elástica [22]. Desgraciadamente no hay ninguna primitiva de sistema distribuido de slicing que soporte un particionamiento del estado interno [33] junto con un cambio en caliente, además de que los sistemas cloud actuales como OpenStack u OpenNebula no ofrecen directamente una monitorización elástica. Esto implica que hay un problema bilateral: cómo puede una aplicación escalar de forma elástica y cómo monitorizar esa aplicación para saber cuándo escalarla horizontalmente. E-SilboPS es la versión elástica de SilboPS y se adapta perfectamente como solución para el problema de monitorización, gracias al paradigma publicador/subscriptor basado en contenido y, a diferencia de otras soluciones [5], permite escalar eficientemente, para cumplir con la carga de trabajo sin sobre-provisionar o sub-provisionar recursos. Además está basado en un algoritmo recientemente diseñado que muestra como añadir elasticidad a una aplicación con distintas restricciones sobre el estado: sin estado, estado aislado con coordinación externa y estado compartido con coordinación general. Su evaluación enseña como se pueden conseguir notables speedups, siendo el nivel de red el principal factor limitante: de hecho la eficiencia calculada (ver Figura 5.8) demuestra cómo se comporta cada configuración en comparación con las adyacentes. Esto permite conocer la tendencia actual de todo el sistema, para saber si la siguiente configuración compensará el coste que tiene con la ganancia que lleva en el throughput de notificaciones. Se tiene que prestar especial atención en la evaluación de los despliegues con igual coste, para ver cuál es la mejor solución en relación a una carga de trabajo dada. Como último análisis se ha estimado el overhead introducido por las distintas configuraciones a fin de identificar el principal factor limitante del throughput. Esto ayuda a determinar la parte secuencial y el overhead de base [26] en un despliegue óptimo en comparación con uno subóptimo. Efectivamente, según el tipo de carga de trabajo, la estimación puede ser tan baja como el 10 % para un óptimo local o tan alta como el 60 %: esto ocurre cuando se despliega una configuración sobredimensionada para la carga de trabajo. Esta estimación de la métrica de Karp-Flatt es importante para el sistema de gestión porque le permite conocer en que dirección (ampliar o reducir) es necesario cambiar el despliegue para mejorar sus prestaciones, en lugar que usar simplemente una política de ampliación. ABSTRACT The application of pervasive computing is extending from field-specific to everyday use. The Internet of Things (IoT) is the shiniest example of its application and of its intrinsic complexity compared with classical application development. The main characteristic that differentiates pervasive from other forms of computing lies in the use of contextual information. Some classical applications do not use any contextual information whatsoever. Others, on the other hand, use only part of the contextual information, which is integrated in an ad hoc fashion using an application-specific implementation. This information is handled in a one-off manner because of the difficulty of sharing context across applications. As a matter of fact, the application type determines what the contextual information is. For instance, for an imaging editor, the image is the information and its meta-data, like the time of the shot or camera settings, are the context, whereas, for a file-system application, the image, including its camera settings, is the information and the meta-data external to the file, like the modification date or the last accessed timestamps, constitute the context. This means that contextual information is hard to share. A communication middleware that supports context decidedly eases application development in pervasive computing. However, the use of context should not be mandatory; otherwise, the communication middleware would be reduced to a context middleware and no longer be compatible with non-context-aware applications. SilboPS, our implementation of content-based publish/subscribe inspired by SIENA [11, 9], solves this problem by adding two new elements to the paradigm: the context and the context function. Context represents the actual contextual information specific to the message to be sent or that needs to be notified to the subscriber, whereas the context function is evaluated using the publisher’s context and the subscriber’s context to decide whether the current message and context are useful for the subscriber. In this manner, context logic management is decoupled from context management, increasing the flexibility of communication and usage across different applications. Since the default context is empty, context-aware and classical applications can use the same SilboPS, resolving the syntactic mismatch that there is between the two categories. In any case, the possible semantic mismatch is still present because it depends on how each application interprets the data, and it cannot be resolved by an agnostic third party. The IoT environment introduces not only context but scaling challenges too. The number of sensors, the volume of the data that they produce and the number of applications that could be interested in harvesting such data are growing all the time. Today’s response to the above need is cloud computing. However, cloud computing applications need to be able to scale elastically [22]. Unfortunately there is no slicing, as distributed system primitives that support internal state partitioning [33] and hot swapping and current cloud systems like OpenStack or OpenNebula do not provide elastic monitoring out of the box. This means there is a two-sided problem: 1) how to scale an application elastically and 2) how to monitor the application and know when it should scale in or out. E-SilboPS is the elastic version of SilboPS. I t is the solution for the monitoring problem thanks to its content-based publish/subscribe nature and, unlike other solutions [5], it scales efficiently so as to meet workload demand without overprovisioning or underprovisioning. Additionally, it is based on a newly designed algorithm that shows how to add elasticity in an application with different state constraints: stateless, isolated stateful with external coordination and shared stateful with general coordination. Its evaluation shows that it is able to achieve remarkable speedups where the network layer is the main limiting factor: the calculated efficiency (see Figure 5.8) shows how each configuration performs with respect to adjacent configurations. This provides insight into the actual trending of the whole system in order to predict if the next configuration would offset its cost against the resulting gain in notification throughput. Particular attention has been paid to the evaluation of same-cost deployments in order to find out which one is the best for the given workload demand. Finally, the overhead introduced by the different configurations has been estimated to identify the primary limiting factor for throughput. This helps to determine the intrinsic sequential part and base overhead [26] of an optimal versus a suboptimal deployment. Depending on the type of workload, this can be as low as 10% in a local optimum or as high as 60% when an overprovisioned configuration is deployed for a given workload demand. This Karp-Flatt metric estimation is important for system management because it indicates the direction (scale in or out) in which the deployment has to be changed in order to improve its performance instead of simply using a scale-out policy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Over the last few years, the Data Center market has increased exponentially and this tendency continues today. As a direct consequence of this trend, the industry is pushing the development and implementation of different new technologies that would improve the energy consumption efficiency of data centers. An adaptive dashboard would allow the user to monitor the most important parameters of a data center in real time. For that reason, monitoring companies work with IoT big data filtering tools and cloud computing systems to handle the amounts of data obtained from the sensors placed in a data center.Analyzing the market trends in this field we can affirm that the study of predictive algorithms has become an essential area for competitive IT companies. Complex algorithms are used to forecast risk situations based on historical data and warn the user in case of danger. Considering that several different users will interact with this dashboard from IT experts or maintenance staff to accounting managers, it is vital to personalize it automatically. Following that line of though, the dashboard should only show relevant metrics to the user in different formats like overlapped maps or representative graphs among others. These maps will show all the information needed in a visual and easy-to-evaluate way. To sum up, this dashboard will allow the user to visualize and control a wide range of variables. Monitoring essential factors such as average temperature, gradients or hotspots as well as energy and power consumption and savings by rack or building would allow the client to understand how his equipment is behaving, helping him to optimize the energy consumption and efficiency of the racks. It also would help him to prevent possible damages in the equipment with predictive high-tech algorithms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We show a method for parallelizing top down dynamic programs in a straightforward way by a careful choice of a lock-free shared hash table implementation and randomization of the order in which the dynamic program computes its subproblems. This generic approach is applied to dynamic programs for knapsack, shortest paths, and RNA structure alignment, as well as to a state-of-the-art solution for minimizing the máximum number of open stacks. Experimental results are provided on three different modern multicore architectures which show that this parallelization is effective and reasonably scalable. In particular, we obtain over 10 times speedup for 32 threads on the open stacks problem.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Establishing trust while preserving privacy is a challenging research problem. In this paper we introduce lambda -congenial secret groups which allow users to recognize trusted partners based on common attributes while preserving their anonymity and privacy. Such protocols are different from authentication protocols, since the latter are based on identities, while the former are based on attributes. Introducing attributes in trust establishment allows a greater flexibility but also brings up several issues. In this paper, we investigate the problem of building trust with attributes by presenting motivating examples, analyzing the security requirements and giving an informal definition. We also survey one of the most related techniques, namely private matching, and finally present solutions based on it.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Complexity has always been one of the most important issues in distributed computing. From the first clusters to grid and now cloud computing, dealing correctly and efficiently with system complexity is the key to taking technology a step further. In this sense, global behavior modeling is an innovative methodology aimed at understanding the grid behavior. The main objective of this methodology is to synthesize the grid's vast, heterogeneous nature into a simple but powerful behavior model, represented in the form of a single, abstract entity, with a global state. Global behavior modeling has proved to be very useful in effectively managing grid complexity but, in many cases, deeper knowledge is needed. It generates a descriptive model that could be greatly improved if extended not only to explain behavior, but also to predict it. In this paper we present a prediction methodology whose objective is to define the techniques needed to create global behavior prediction models for grid systems. This global behavior prediction can benefit grid management, specially in areas such as fault tolerance or job scheduling. The paper presents experimental results obtained in real scenarios in order to validate this approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polyvariant specialization allows generating múltiple versions of a procedure, which can then be separately optimized for different uses. Since allowing a high degree of polyvariance often results in more optimized code, polyvariant specializers, such as most partial evaluators, can genérate a large number of versions. This can produce unnecessarily large residual programs. Also, large programs can be slower due to cache miss effects. A possible solution to this problem is to introduce a minimization step which identifies sets of equivalent versions, and replace all occurrences of such versions by a single one. In this work we present a unifying view of the problem of superfluous polyvariance. It includes both partial deduction and abstract múltiple specialization. As regards partial deduction, we extend existing approaches in several ways. First, previous work has dealt with puré logic programs and a very limited class of builtins. Herein we propose an extensión to traditional characteristic trees which can be used in the presence of calis to external predicates. This includes all builtins, librarles, other user modules, etc. Second, we propose the possibility of collapsing versions which are not strictly equivalent. This allows trading time for space and can be useful in the context of embedded and pervasive systems. This is done by residualizing certain computations for external predicates which would otherwise be performed at specialization time. Third, we provide an experimental evaluation of the potential gains achievable using minimization which leads to interesting conclusions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Virtualized Infrastructures are a promising way for providing flexible and dynamic computing solutions for resourceconsuming tasks. Scientific Workflows are one of these kind of tasks, as they need a large amount of computational resources during certain periods of time. To provide the best infrastructure configuration for a workflow it is necessary to explore as many providers as possible taking into account different criteria like Quality of Service, pricing, response time, network latency, etc. Moreover, each one of these new resources must be tuned to provide the tools and dependencies required by each of the steps of the workflow. Working with different infrastructure providers, either public or private using their own concepts and terms, and with a set of heterogeneous applications requires a framework for integrating all the information about these elements. This work proposes semantic technologies for describing and integrating all the information about the different components of the overall system and a set of policies created by the user. Based on this information a scheduling process will be performed to generate an infrastructure configuration defining the set of virtual machines that must be run and the tools that must be deployed on them.