59 resultados para Turbulent Flocculation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

El agotamiento, la ausencia o, simplemente, la incertidumbre sobre la cantidad de las reservas de combustibles fósiles se añaden a la variabilidad de los precios y a la creciente inestabilidad en la cadena de aprovisionamiento para crear fuertes incentivos para el desarrollo de fuentes y vectores energéticos alternativos. El atractivo de hidrógeno como vector energético es muy alto en un contexto que abarca, además, fuertes inquietudes por parte de la población sobre la contaminación y las emisiones de gases de efecto invernadero. Debido a su excelente impacto ambiental, la aceptación pública del nuevo vector energético dependería, a priori, del control de los riesgos asociados su manipulación y almacenamiento. Entre estos, la existencia de un innegable riesgo de explosión aparece como el principal inconveniente de este combustible alternativo. Esta tesis investiga la modelización numérica de explosiones en grandes volúmenes, centrándose en la simulación de la combustión turbulenta en grandes dominios de cálculo en los que la resolución que es alcanzable está fuertemente limitada. En la introducción, se aborda una descripción general de los procesos de explosión. Se concluye que las restricciones en la resolución de los cálculos hacen necesario el modelado de los procesos de turbulencia y de combustión. Posteriormente, se realiza una revisión crítica de las metodologías disponibles tanto para turbulencia como para combustión, que se lleva a cabo señalando las fortalezas, deficiencias e idoneidad de cada una de las metodologías. Como conclusión de esta investigación, se obtiene que la única estrategia viable para el modelado de la combustión, teniendo en cuenta las limitaciones existentes, es la utilización de una expresión que describa la velocidad de combustión turbulenta en función de distintos parámetros. Este tipo de modelos se denominan Modelos de velocidad de llama turbulenta y permiten cerrar una ecuación de balance para la variable de progreso de combustión. Como conclusión también se ha obtenido, que la solución más adecuada para la simulación de la turbulencia es la utilización de diferentes metodologías para la simulación de la turbulencia, LES o RANS, en función de la geometría y de las restricciones en la resolución de cada problema particular. Sobre la base de estos hallazgos, el crea de un modelo de combustión en el marco de los modelos de velocidad de la llama turbulenta. La metodología propuesta es capaz de superar las deficiencias existentes en los modelos disponibles para aquellos problemas en los que se precisa realizar cálculos con una resolución moderada o baja. Particularmente, el modelo utiliza un algoritmo heurístico para impedir el crecimiento del espesor de la llama, una deficiencia que lastraba el célebre modelo de Zimont. Bajo este enfoque, el énfasis del análisis se centra en la determinación de la velocidad de combustión, tanto laminar como turbulenta. La velocidad de combustión laminar se determina a través de una nueva formulación capaz de tener en cuenta la influencia simultánea en la velocidad de combustión laminar de la relación de equivalencia, la temperatura, la presión y la dilución con vapor de agua. La formulación obtenida es válida para un dominio de temperaturas, presiones y dilución con vapor de agua más extenso de cualquiera de las formulaciones previamente disponibles. Por otra parte, el cálculo de la velocidad de combustión turbulenta puede ser abordado mediante el uso de correlaciones que permiten el la determinación de esta magnitud en función de distintos parámetros. Con el objetivo de seleccionar la formulación más adecuada, se ha realizado una comparación entre los resultados obtenidos con diversas expresiones y los resultados obtenidos en los experimentos. Se concluye que la ecuación debida a Schmidt es la más adecuada teniendo en cuenta las condiciones del estudio. A continuación, se analiza la importancia de las inestabilidades de la llama en la propagación de los frentes de combustión. Su relevancia resulta significativa para mezclas pobres en combustible en las que la intensidad de la turbulencia permanece moderada. Estas condiciones son importantes dado que son habituales en los accidentes que ocurren en las centrales nucleares. Por ello, se lleva a cabo la creación de un modelo que permita estimar el efecto de las inestabilidades, y en concreto de la inestabilidad acústica-paramétrica, en la velocidad de propagación de llama. El modelado incluye la derivación matemática de la formulación heurística de Bauwebs et al. para el cálculo de la incremento de la velocidad de combustión debido a las inestabilidades de la llama, así como el análisis de la estabilidad de las llamas con respecto a una perturbación cíclica. Por último, los resultados se combinan para concluir el modelado de la inestabilidad acústica-paramétrica. Tras finalizar esta fase, la investigación se centro en la aplicación del modelo desarrollado en varios problemas de importancia para la seguridad industrial y el posterior análisis de los resultados y la comparación de los mismos con los datos experimentales correspondientes. Concretamente, se abordo la simulación de explosiones en túneles y en contenedores, con y sin gradiente de concentración y ventilación. Como resultados generales, se logra validar el modelo confirmando su idoneidad para estos problemas. Como última tarea, se ha realizado un analisis en profundidad de la catástrofe de Fukushima-Daiichi. El objetivo del análisis es determinar la cantidad de hidrógeno que explotó en el reactor número uno, en contraste con los otros estudios sobre el tema que se han centrado en la determinación de la cantidad de hidrógeno generado durante el accidente. Como resultado de la investigación, se determinó que la cantidad más probable de hidrogeno que fue consumida durante la explosión fue de 130 kg. Es un hecho notable el que la combustión de una relativamente pequeña cantidad de hidrogeno pueda causar un daño tan significativo. Esta es una muestra de la importancia de este tipo de investigaciones. Las ramas de la industria para las que el modelo desarrollado será de interés abarca la totalidad de la futura economía de hidrógeno (pilas de combustible, vehículos, almacenamiento energético, etc) con un impacto especial en los sectores del transporte y la energía nuclear, tanto para las tecnologías de fisión y fusión. ABSTRACT The exhaustion, absolute absence or simply the uncertainty on the amount of the reserves of fossil fuels sources added to the variability of their prices and the increasing instability and difficulties on the supply chain are strong incentives for the development of alternative energy sources and carriers. The attractiveness of hydrogen in a context that additionally comprehends concerns on pollution and emissions is very high. Due to its excellent environmental impact, the public acceptance of the new energetic vector will depend on the risk associated to its handling and storage. Fromthese, the danger of a severe explosion appears as the major drawback of this alternative fuel. This thesis investigates the numerical modeling of large scale explosions, focusing on the simulation of turbulent combustion in large domains where the resolution achievable is forcefully limited. In the introduction, a general description of explosion process is undertaken. It is concluded that the restrictions of resolution makes necessary the modeling of the turbulence and combustion processes. Subsequently, a critical review of the available methodologies for both turbulence and combustion is carried out pointing out their strengths and deficiencies. As a conclusion of this investigation, it appears clear that the only viable methodology for combustion modeling is the utilization of an expression for the turbulent burning velocity to close a balance equation for the combustion progress variable, a model of the Turbulent flame velocity kind. Also, that depending on the particular resolution restriction of each problem and on its geometry the utilization of different simulation methodologies, LES or RANS, is the most adequate solution for modeling the turbulence. Based on these findings, the candidate undertakes the creation of a combustion model in the framework of turbulent flame speed methodology which is able to overcome the deficiencies of the available ones for low resolution problems. Particularly, the model utilizes a heuristic algorithm to maintain the thickness of the flame brush under control, a serious deficiency of the Zimont model. Under the approach utilized by the candidate, the emphasis of the analysis lays on the accurate determination of the burning velocity, both laminar and turbulent. On one side, the laminar burning velocity is determined through a newly developed correlation which is able to describe the simultaneous influence of the equivalence ratio, temperature, steam dilution and pressure on the laminar burning velocity. The formulation obtained is valid for a larger domain of temperature, steam dilution and pressure than any of the previously available formulations. On the other side, a certain number of turbulent burning velocity correlations are available in the literature. For the selection of the most suitable, they have been compared with experiments and ranked, with the outcome that the formulation due to Schmidt was the most adequate for the conditions studied. Subsequently, the role of the flame instabilities on the development of explosions is assessed. Their significance appears to be of importance for lean mixtures in which the turbulence intensity remains moderate. These are important conditions which are typical for accidents on Nuclear Power Plants. Therefore, the creation of a model to account for the instabilities, and concretely, the acoustic parametric instability is undertaken. This encloses the mathematical derivation of the heuristic formulation of Bauwebs et al. for the calculation of the burning velocity enhancement due to flame instabilities as well as the analysis of the stability of flames with respect to a cyclic velocity perturbation. The results are combined to build a model of the acoustic-parametric instability. The following task in this research has been to apply the model developed to several problems significant for the industrial safety and the subsequent analysis of the results and comparison with the corresponding experimental data was performed. As a part of such task simulations of explosions in a tunnel and explosions in large containers, with and without gradient of concentration and venting have been carried out. As a general outcome, the validation of the model is achieved, confirming its suitability for the problems addressed. As a last and final undertaking, a thorough study of the Fukushima-Daiichi catastrophe has been carried out. The analysis performed aims at the determination of the amount of hydrogen participating on the explosion that happened in the reactor one, in contrast with other analysis centered on the amount of hydrogen generated during the accident. As an outcome of the research, it was determined that the most probable amount of hydrogen exploding during the catastrophe was 130 kg. It is remarkable that the combustion of such a small quantity of material can cause tremendous damage. This is an indication of the importance of these types of investigations. The industrial branches that can benefit from the applications of the model developed in this thesis include the whole future hydrogen economy, as well as nuclear safety both in fusion and fission technology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La aparición de inestabilidades en un flujo es un problema importante que puede afectar a algunas aplicaciones aerodinámicas. De hecho existen diferentes tipos de fenómenos no-estacionarios que actualmente son tema de investigación; casos como la separación a altos ángulos de ataque o el buffet transónico son dos ejemplos de cierta relevancia. El análisis de estabilidad global permite identificar la aparición de dichas condiciones inestables, proporcionando información importante sobre la región donde la inestabilidad es dominante y sobre la frecuencia del fenómeno inestable. La metodología empleada es capaz de calcular un flujo base promediado mediante una discretización con volúmenes finitos y posteriormente la solución de un problema de autovalores asociado a la linealización que aparece al perturbar el flujo base. El cálculo numérico se puede dividir en tres pasos: primero se calcula una solución estacionaria para las ecuaciones RANS, luego se extrae la matriz del Jacobiano que representa el problema linealizado y finalmente se deriva y se resuelve el problema de autovalores generalizado mediante el método iterativo de Arnoldi. Como primer caso de validación, la técnica descrita ha sido aplicada a un cilindro circular en condiciones laminares para detectar el principio de las oscilaciones de los vórtices de von Karman, y se han comparado los resultados con experimentos y cálculos anteriores. La parte más importante del estudio se centra en el análisis de flujos compresibles en régimen turbulento. La predicción de la aparición y la progresión de flujo separado a altos ángulos de ataque se han estudiado en el perfil NACA0012 en condiciones tanto subsónicas como supersónicas y en una sección del ala del A310 en condiciones de despegue. Para todas las geometrías analizadas, se ha podido observar que la separación gradual genera la aparición de un modo inestable específico para altos ángulos de ataque siempre mayores que el ángulo asociado al máximo coeficiente de sustentación. Además, se ha estudiado el problema adjunto para obtener información sobre la zona donde una fuerza externa provoca el máximo cambio en el campo fluido. El estudio se ha completado calculando el mapa de sensibilidad estructural y localizando el centro de la inestabilidad. En el presente trabajo de tesis se ha analizado otro importante fenómeno: el buffet transónico. En condiciones transónicas, la interacción entre la onda de choque y la capa límite genera una oscilación de la posición de la onda de choque y, por consiguiente, de las fuerzas aerodinámicas. El conocimiento de las condiciones críticas y su origen puede ayudar a evitar la oscilación causada por estas fuerzas. Las condiciones para las cuales comienza la inestabilidad han sido calculadas y comparadas con trabajos anteriores. Por otra parte, los resultados del correspondiente problema adjunto y el mapa de sensibilidad se han obtenido por primera vez para el buffet, indicando la región del dominio que sera necesario modificar para crear el mayor cambio en las propiedades del campo fluido. Dado el gran consumo de memoria requerido para los casos 3D, se ha realizado un estudio sobre la reducción del domino con la finalidad de reducirlo a la región donde está localizada la inestabilidad. La eficacia de dicha reducción de dominio ha sido evaluada investigando el cambio en la dimensión de la matriz del Jacobiano, no resultando muy eficiente en términos del consumo de memoria. Dado que el buffet es un problema en general tridimensional, el análisis TriGlobal de una geometría 3D podría considerarse el auténtico reto futuro. Como aproximación al problema, un primer estudio se ha realizado empleando una geometría tridimensional extruida del NACA00f2. El cálculo del flujo 3D y, por primera vez en casos tridimensionales compresibles y turbulentos, el análisis de estabilidad TriGlobal, se han llevado a cabo. La comparación de los resultados obtenidos con los resultados del anterior modelo 2D, ha permitido, primero, verificar la exactitud del cálculo 2D realizado anteriormente y también ha proporcionado una estimación del consumo de memoria requerido para el caso 3D. ABSTRACT Flow unsteadiness is an important problem in aerodynamic applications. In fact, there are several types of unsteady phenomena that are still at the cutting edge of research in the field; separation at high angles of attack and transonic buffet are two important examples. Global Stability Analysis can identify the unstable onset conditions, providing important information about the instability location in the domain and the frequency of the unstable phenomenon. The methodology computes a base flow averaged state based on a finite volume discretization and a solution for a generalized eigenvalue problem corresponding to the perturbed linearized equations. The numerical computation is then performed in three steps: first, a steady solution for the RANS equation is computed; second, the Jacobian matrix that represents the linearized problem is obtained; and finally, the generalized eigenvalue problem is derived and solved with an Arnoldi iterative method. As a first validation test, the technique has been applied on a laminar circular cylinder in order to detect the von Karman vortex shedding onset, comparing the results with experiments and with previous calculations. The main part of the study focusses on turbulent and compressible cases. The prediction of the origin and progression of separated flows at high angles of attack has been studied on the NACA0012 airfoil at subsonic and transonic conditions and for the A310 airfoil in take-off configuration. For all the analyzed geometries, it has been found that gradual separation generates the appearance of one specific unstable mode for angles of attack always greater than the ones related to the maximum lift coefficient. In addition, the adjoint problem has been studied to suggest the location of an external force that results in the largest change to the flow field. From the direct and the adjoint analysis the structural sensitivity map has been computed and the core of the instability has been located. The other important phenomenon analyzed in this work is the transonic buffet. In transonic conditions, the interaction between the shock wave and the boundary layer leads to an oscillation of the shock location and, consequently, of the aerodynamic forces. Knowing the critical operational conditions and its origin can be helpful in preventing such fluctuating forces. The instability onset has then been computed and compared with the literature. Moreover, results of the corresponding adjoint problem and a sensitivity map have been provided for the first time for the buffet problem, indicating the region that must be modified to create the biggest change in flow field properties. Because of the large memory consumption required when a 3D case is approached, a domain reduction study has been carried out with the aim of limiting the domain size to the region where the instability is located. The effectiveness of the domain reduction has been evaluated by investigating the change in the Jacobian matrix size, not being very efficient in terms of memory consumption. Since buffet is a three-dimensional problem, TriGlobal stability analysis can be seen as a future challenge. To approximate the problem, a first study has been carried out on an extruded three-dimensional geometry of the NACA0012 airfoil. The 3D flow computation and the TriGlobal stability analysis have been performed for the first time on a compressible and turbulent 3D case. The results have been compared with a 2D model, confirming that the buffet onset evaluated in the 2D case is well detected. Moreover, the computation has given an indication about the memory consumption for a 3D case.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Computer Fluid Dynamics tools have already become a valuable instrument for Naval Architects during the ship design process, thanks to their accuracy and the available computer power. Unfortunately, the development of RANSE codes, generally used when viscous effects play a major role in the flow, has not reached a mature stage, being the accuracy of the turbulence models and the free surface representation the most important sources of uncertainty. Another level of uncertainty is added when the simulations are carried out for unsteady flows, as those generally studied in seakeeping and maneuvering analysis and URANS equations solvers are used. Present work shows the applicability and the benefits derived from the use of new approaches for the turbulence modeling (Detached Eddy Simulation) and the free surface representation (Level Set) on the URANS equations solver CFDSHIP-Iowa. Compared to URANS, DES is expected to predict much broader frequency contents and behave better in flows where boundary layer separation plays a major role. Level Set methods are able to capture very complex free surface geometries, including breaking and overturning waves. The performance of these improvements is tested in set of fairly complex flows, generated by a Wigley hull at pure drift motion, with drift angle ranging from 10 to 60 degrees and at several Froude numbers to study the impact of its variation. Quantitative verification and validation are performed with the obtained results to guarantee their accuracy. The results show the capability of the CFDSHIP-Iowa code to carry out time-accurate simulations of complex flows of extreme unsteady ship maneuvers. The Level Set method is able to capture very complex geometries of the free surface and the use of DES in unsteady simulations highly improves the results obtained. Vortical structures and instabilities as a function of the drift angle and Fr are qualitatively identified. Overall analysis of the flow pattern shows a strong correlation between the vortical structures and free surface wave pattern. Karman-like vortex shedding is identified and the scaled St agrees well with the universal St value. Tip vortices are identified and the associated helical instabilities are analyzed. St using the hull length decreases with the increase of the distance along the vortex core (x), which is similar to results from other simulations. However, St scaled using distance along the vortex cores shows strong oscillations compared to almost constants for those previous simulations. The difference may be caused by the effect of the free-surface, grid resolution, and interaction between the tip vortex and other vortical structures, which needs further investigations. This study is exploratory in the sense that finer grids are desirable and experimental data is lacking for large α, especially for the local flow. More recently, high performance computational capability of CFDSHIP-Iowa V4 has been improved such that large scale computations are possible. DES for DTMB 5415 with bilge keels at α = 20º were conducted using three grids with 10M, 48M and 250M points. DES analysis for flows around KVLCC2 at α = 30º is analyzed using a 13M grid and compared with the results of DES on the 1.6M grid by. Both studies are consistent with what was concluded on grid resolution herein since dominant frequencies for shear-layer, Karman-like, horse-shoe and helical instabilities only show marginal variation on grid refinement. The penalties of using coarse grids are smaller frequency amplitude and less resolved TKE. Therefore finer grids should be used to improve V&V for resolving most of the active turbulent scales for all different Fr and α, which hopefully can be compared with additional EFD data for large α when it becomes available.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Este trabajo esta dedicado al estudio de las estructuras macroscópicas conocidas en la literatura como filamentos o blobs que han sido observadas de manera universal en el borde de todo tipo de dispositivos de fusión por confinamiento magnético. Estos filamentos, celdas convectivas elongadas a lo largo de las líneas de campo que surgen en el plasma fuertemente turbulento que existe en este tipo de dispositivos, parecen dominar el transporte radial de partículas y energía en la región conocida como Scrape-off Layer, en la que las líneas de campo dejan de estar cerradas y el plasma es dirigido hacia la pared sólida que forma la cámara de vacío. Aunque el comportamiento y las leyes de escala de estas estructuras son relativamente bien conocidos, no existe aún una teoría generalmente aceptada acerca del mecanismo físico responsable de su formación, que constituye una de las principales incógnitas de la teoría de transporte del borde en plasmas de fusión y una cuestión de gran importancia práctica en el desarrollo de la siguiente generación de reactores de fusión (incluyendo dispositivos como ITER y DEMO), puesto que la eficiencia del confinamiento y la cantidad de energía depositadas en la pared dependen directamente de las características del transporte en el borde. El trabajo ha sido realizado desde una perspectiva eminentemente experimental, incluyendo la observación y el análisis de este tipo de estructuras en el stellarator tipo heliotrón LHD (un dispositivo de gran tamaño, capaz de generar plasmas de características cercanas a las necesarias en un reactor de fusión) y en el stellarator tipo heliac TJ-II (un dispositivo de medio tamaño, capaz de generar plasmas relativamente más fríos pero con una accesibilidad y disponibilidad de diagnósticos mayor). En particular, en LHD se observó la generación de filamentos durante las descargas realizadas en configuración de alta _ (alta presión cinética frente a magnética) mediante una cámara visible ultrarrápida, se caracterizó su comportamiento y se investigó, mediante el análisis estadístico y la comparación con modelos teóricos, el posible papel de la Criticalidad Autoorganizada en la formación de este tipo de estructuras. En TJ-II se diseñó y construyó una cabeza de sonda capaz de medir simultáneamente las fluctuaciones electrostáticas y electromagnéticas del plasma. Gracias a este nuevo diagnóstico se pudieron realizar experimentos con el fin de determinar la presencia de corriente paralela a través de los filamentos (un parámetro de gran importancia en su modelización) y relacionar los dos tipos de fluctuaciones por primera vez en un stellarator. Así mismo, también por primera vez en este tipo de dispositivo, fue posible realizar mediciones simultáneas de los tensores viscoso y magnético (Reynolds y Maxwell) de transporte de cantidad de movimiento. ABSTRACT This work has been devoted to the study of the macroscopic structures known in the literature as filaments or blobs, which have been observed universally in the edge of all kind of magnetic confinement fusion devices. These filaments, convective cells stretching along the magnetic field lines, arise from the highly turbulent plasma present in this kind of machines and seem to dominate radial transport of particles and energy in the region known as Scrapeoff Layer, in which field lines become open and plasma is directed towards the solid wall of the vacuum vessel. Although the behavior and scale laws of these structures are relatively well known, there is no generally accepted theory about the physical mechanism involved in their formation yet, which remains one of the main unsolved questions in the fusion plasmas edge transport theory and a matter of great practical importance for the development of the next generation of fusion reactors (including ITER and DEMO), since efficiency of confinement and the energy deposition levels on the wall are directly dependent of the characteristics of edge transport. This work has been realized mainly from an experimental perspective, including the observation and analysis of this kind of structures in the heliotron stellarator LHD (a large device capable of generating reactor-relevant plasma conditions) and in the heliac stellarator TJ-II (a medium-sized device, capable of relatively colder plasmas, but with greater ease of access and diagnostics availability). In particular, in LHD, the generation of filaments during high _ discharges (with high kinetic to magnetic pressure ratio) was observed by means of an ultrafast visible camera, and the behavior of this structures was characterized. Finally, the potential role of Self-Organized Criticality in the generation of filaments was investigated. In TJ-II, a probe head capable of measuring simultaneously electrostatic and electromagnetic fluctuations in the plasma was designed and built. Thanks to this new diagnostic, experiments were carried out in order to determine the presence of parallel current through filaments (one of the most important parameters in their modelization) and to related electromagnetic (EM) and electrostatic (ES) fluctuations for the first time in an stellarator. As well, also for the first time in this kind of device, measurements of the viscous and magnetic momentum transfer tensors (Reynolds and Maxwell) were performed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The airline industry is often unstable and unpredictable forcing airlines to restructure and create flexible strategies that can respond to external operating environmental changes. In turbulent and competitive environments, firms with higher flexibility perform better and the value of these flexibilities depends on factors of uncertainty in the competitive environment. A model is sought for and arrived at, that shows how an airline business model will function in an uncertain environment with the least reduction in business performance over time. An analysis of the business model flexibility of 17 Airlines from Asia, Europe and Oceania, that is done with core competence as the indicator reveals a picture of inconsistencies in the core competence strategy of certain airlines and the corresponding reduction in business performance. The performance variations are explained from a service oriented core competence strategy employed by airlines that ultimately enables them in having a flexible business model that not only increases business performance but also helps in reducing the uncertainties in the internal and external operating environments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Global linear instability theory is concerned with the temporal or spatial development of small-amplitude perturbations superposed upon laminar steady or time-periodic threedimensional flows, which are inhomogeneous in two (and periodic in one) or all three spatial directions.1 The theory addresses flows developing in complex geometries, in which the parallel or weakly nonparallel basic flow approximation invoked by classic linear stability theory does not hold. As such, global linear theory is called to fill the gap in research into stability and transition in flows over or through complex geometries. Historically, global linear instability has been (and still is) concerned with solution of multi-dimensional eigenvalue problems; the maturing of non-modal linear instability ideas in simple parallel flows during the last decade of last century2–4 has given rise to investigation of transient growth scenarios in an ever increasing variety of complex flows. After a brief exposition of the theory, connections are sought with established approaches for structure identification in flows, such as the proper orthogonal decomposition and topology theory in the laminar regime and the open areas for future research, mainly concerning turbulent and three-dimensional flows, are highlighted. Recent results obtained in our group are reported in both the time-stepping and the matrix-forming approaches to global linear theory. In the first context, progress has been made in implementing a Jacobian-Free Newton Krylov method into a standard finite-volume aerodynamic code, such that global linear instability results may now be obtained in compressible flows of aeronautical interest. In the second context a new stable very high-order finite difference method is implemented for the spatial discretization of the operators describing the spatial BiGlobal EVP, PSE-3D and the TriGlobal EVP; combined with sparse matrix treatment, all these problems may now be solved on standard desktop computers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Esta tesis doctoral es el fruto de un trabajo de investigación cuyo objetivo principal es definir criterios de diseño de protecciones en forma de repié en presas de materiales sueltos cuyo espaldón de aguas abajo esté formado por escollera. La protección propuesta consiste en un relleno de material granular situado sobre el pie de aguas abajo de la presa y formado a su vez por una escollera con características diferenciadas respecto de la escollera que integra el espaldón de la presa. La función de esta protección es evitar que se produzcan deslizamientos en masa cuando una cantidad de agua anormalmente elevada circula accidentalmente por el espaldón de aguas abajo de la presa por distintos motivos como pueden ser el vertido por coronación de la presa o la pérdida de estanqueidad del elemento impermeable o del cimiento. Según los datos de la International Commission on Large Dams (ICOLD 1995) el 70% de las causas de rotura o avería grave en presas de materiales sueltos en el mundo están dentro de las que se han indicado con anterioridad. Esta circulación accidental de agua a través del espaldón de escollera, típicamente turbulenta, se ha denominado en esta tesis percolación (“through flow”, en inglés) para diferenciarla del término filtración, habitualmente utilizada para el flujo laminar a través de un material fino. El fenómeno físico que origina la rotura de presas de materiales sueltos sometidas a percolación accidental es complejo, entrando en juego diversidad de parámetros, muchas veces no deterministas, y con acoplamiento entre procesos, tanto de filtración como de arrastre y deslizamiento. En esta tesis se han realizado diferentes estudios experimentales y numéricos con objeto de analizar el efecto sobre el nivel de protección frente al deslizamiento en masa que producen los principales parámetros geométricos que definen el repié: la anchura de la berma, el talud exterior y su altura máxima desde la base. También se han realizado estudios sobre factores con gran influencia en el fenómeno de la percolación como son la anisotropía del material y el incremento de los caudales unitarios en el pie de presa debidos a la forma de la cerrada. A partir de los resultados obtenidos en las distintas campañas de modelación física y numérica se han obtenido conclusiones respecto a la efectividad de este tipo de protección para evitar parcial o totalmente los daños provocados por percolación accidental en presas de escollera. El resultado final de la tesis es un procedimiento de diseño para este tipo de protecciones. Con objeto de completar los criterios de dimensionamiento, teniendo en cuenta los mecanismos de rotura por erosión interna y arrastre, se han incluido dentro del procedimiento recomendaciones adicionales basadas en investigaciones existentes en la bibliografía técnica. Finalmente, se han sugerido posibles líneas de investigación futuras para ampliar el conocimiento de fenómenos complejos que influyen en el comportamiento de este tipo de protección como son el efecto de escala, la anisotropía de la escollera, las leyes de resistencia que rigen la filtración turbulenta a través de medios granulares, los efectos de cimentaciones poco competentes o la propia caracterización de las propiedades de la escollera de presas. This thesis is the result of a research project that had the main objective of defining criteria to design rockfill toe protections for dams with a highly‐permeable downstream shoulder. The proposed protection consists of a rockfill toe berm situated downstream from the dam with specific characteristics with respect to the rockfill that integrates the shoulder of the main dam. The function of these protections is to prevent mass slides due to an abnormally high water flow circulation through the dam shoulder. This accidental seepage flow may be caused by such reasons as overtopping or the loss of sealing at the impervious element of the dam or its foundation. According to data from the International Commission on Large Dams (ICOLD 1995), 70% of the causes of failure or serious damage in embankment dams in the world are within that described previously. This accidental seepage of water through the rockfill shoulder, typically turbulent, is usually called through‐flow. The physical phenomenon which causes the breakage of the rockfill shoulder during such through‐flow processes is complex, involving diversity of parameters (often not deterministic) and coupling among processes, not only seepage but also internal erosion, drag or mass slide. In this thesis, numerical and experimental research is conducted in order to analyze the effects of the main parameters that define the toe protection, i.e. the toe crest length, its slope and maximum height. Additional studies on significant factors which influence the seepage, such as the anisotropy of the material and the increase of the unit flows at the dam toe due to the valley shape are also performed. In addition, conclusions regarding the effectiveness of this type of protection are obtained based on the results of physical and numerical models. The main result of the thesis is a design procedure for this type of protection to avoid mass sliding. In order to complete the design criteria, additional recommendations about internal and external erosion based on the state of the art are included. Finally, new lines of research are suggested for the future to expand the level of knowledge of the complex phenomena that influence the behavior of this type of protection, such as the effects of scale, rockfill anisotropy, non‐linear seepage laws in turbulent seepage through granular media, effects of erodible foundations, or new procedures to characterize the properties of dam rockfill as a construction material.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Separated transitional boundary layers appear on key aeronautical processes such as the flow around wings or turbomachinery blades. The aim of this thesis is the study of these flows in representative scenarios of technological applications, gaining knowledge about phenomenology and physical processes that occur there and, developing a simple model for scaling them. To achieve this goal, experimental measurements have been carried out in a low speed facility, ensuring the flow homogeneity and a low disturbances level such that unwanted transitional mechanisms are avoided. The studied boundary layers have been developed on a flat plate, by imposing a pressure gradient by means of contoured walls. They generate an initial acceleration region followed by a deceleration zone. The initial region is designed to obtain at the beginning of the deceleration the Blasius profile, characterized by its momentum thickness, and an edge boundary layer velocity, defining the problem characteristic velocity. The deceleration region is designed to obtain a linear evolution of the edge velocity, thereby defining the characteristic length of the problem. Several experimental techniques, both intrusive (hot wire anemometry, total pressure probes) as nonintrusive (PIV and LDV anemometry, high-speed filming), have been used in order to take advantage of each of them and allow cross-validation of the results. Once the boundary layer at the deceleration beginning has been characterized, ensuring the desired integral parameters and level of disturbance, the evolution of the laminar boundary layer up to the point of separation is studied. It has been compared with integral methods, and numerical simulations. In view of the results a new model for this evolution is proposed. Downstream from the separation, the flow near to the wall is configured as a shear layer that encloses low momentum recirculating fluid. The region where the shear layer remains laminar tends to be positioned to compensate the adverse pressure gradient associated with the imposed deceleration. Under these conditions, the momentum thickness remains almost constant. This laminar shear layer region extends up to where transitional phenomena appear, extension that scales with the momentum thickness at separation. These transitional phenomena are of inviscid type, similar to those found in free shear layers. The transitional region analysis begins with a study of the disturbances evolution in the linear growth region and the comparison of experimental results with a numerical model based on Linear Stability Theory for parallel flows and with data from other authors. The results’ coalescence for both the disturbances growth and the excited frequencies is stated. For the transition final stages the vorticity concentration into vortex blobs is found, analogously to what happens in free shear layers. Unlike these, the presence of the wall and the pressure gradient make the large scale structures to move towards the wall and quickly disappear under certain circumstances. In these cases, the recirculating flow is confined into a closed region saying the bubble is closed or the boundary layer reattaches. From the reattachment point, the fluid shows a configuration in the vicinity of the wall traditionally considered as turbulent. It has been observed that existing integral methods for turbulent boundary layers do not fit well to the experimental results, due to these methods being valid only for fully developed turbulent flow. Nevertheless, it has been found that downstream from the reattachment point the velocity profiles are self-similar, and a model has been proposed for the evolution of the integral parameters of the boundary layer in this region. Finally, the phenomenon known as bubble burst is analyzed. It has been checked the validity of existing models in literature and a new one is proposed. This phenomenon is blamed to the inability of the large scale structures formed after the transition to overcome with the adverse pressure gradient, move towards the wall and close the bubble. El estudio de capas límites transicionales con separación es de gran relevancia en distintas aplicaciones tecnológicas. Particularmente, en tecnología aeronáutica, aparecen en procesos claves, tales como el flujo alrededor de alas o álabes de turbomaquinaria. El objetivo de esta tesis es el estudio de estos flujos en situaciones representativas de las aplicaciones tecnológicas, ganando por un lado conocimiento sobre la fenomenología y los procesos físicos que aparecen y, por otra parte, desarrollando un modelo sencillo para el escalado de los mismos. Para conseguir este objetivo se han realizado ensayos en una instalación experimental de baja velocidad específicamente diseñada para asegurar un flujo homogéneo y con bajo nivel de perturbaciones, de modo que se evita el disparo de mecanismos transicionales no deseados. La capa límite bajo estudio se ha desarrollado sobre una placa plana, imponiendo un gradiente de presión a la misma por medio de paredes de geometría especificada. éstas generan una región inicial de aceleración seguida de una zona de deceleración. La región inicial se diseña para tener en al inicio de la deceleración un perfil de capa límite de Blasius, caracterizado por su espesor de cantidad de movimiento, y una cierta velocidad externa a la capa límite que se considera la velocidad característica del problema. La región de deceleración está concebida para que la variación de la velocidad externa a la capa límite sea lineal, definiendo de esta forma una longitud característica del problema. Los ensayos se han realizado explotando varias técnicas experimentales, tanto intrusivas (anemometría de hilo caliente, sondas de presión total) como no intrusivas (anemometrías láser y PIV, filmación de alta velocidad), de cara a aprovechar las ventajas de cada una de ellas y permitir validación cruzada de resultados entre las mismas. Caracterizada la capa límite al comienzo de la deceleración, y garantizados los parámetros integrales y niveles de perturbación deseados se procede al estudio de la zona de deceleración. Se presenta en la tesis un análisis de la evolución de la capa límite laminar desde el inicio de la misma hasta el punto de separación, comparando con métodos integrales, simulaciones numéricas, y proponiendo un nuevo modelo para esta evolución. Aguas abajo de la separación, el flujo en las proximidades de la pared se configura como una capa de cortadura que encierra una región de fluido recirculatorio de baja cantidad de movimiento. Se ha caracterizado la región en que dicha capa de cortadura permanece laminar, encontrando que se posiciona de modo que compensa el gradiente adverso de presión asociado a la deceleración de la corriente. En estas condiciones, el espesor de cantidad de movimiento permanece prácticamente constante y esta capa de cortadura laminar se extiende hasta que los fenómenos transicionales aparecen. Estos fenómenos son de tipo no viscoso, similares a los que aparecen en una capa de cortadura libre. El análisis de la región transicional comienza con un estudio de la evolución de las vii viii RESUMEN perturbaciones en la zona de crecimiento lineal de las mismas y la comparación de los resultados experimentales con un modelo numérico y con datos de otros autores. La coalescencia de los resultados tanto para el crecimiento de las perturbaciones como para las frecuencias excitadas queda demostrada. Para los estadios finales de la transición se observa la concentración de la vorticidad en torbellinos, de modo análogo a lo que ocurre en capas de cortadura libres. A diferencia de estas, la presencia de la pared y del gradiente de presión hace que, bajo ciertas condiciones, la gran escala se desplace hacia la pared y desaparezca rápidamente. En este caso el flujo recirculatorio queda confinado en una región cerrada y se habla de cierre de la burbuja o readherencia de la capa límite. A partir del punto de readherencia se tiene una configuración fluida en las proximidades de la pared que tradicionalmente se ha considerado turbulenta. Se ha observado que los métodos integrales existentes para capas límites turbulentas no ajustan bien a las medidas experimentales realizadas, hecho imputable a que no se obtiene en dicha región un flujo turbulento plenamente desarrollado. Se ha encontrado, sin embargo, que pasado el punto de readherencia los perfiles de velocidad próximos a la pared son autosemejantes entre sí y se ha propuesto un modelo para la evolución de los parámetros integrales de la capa límite en esta región. Finalmente, el fenómeno conocido como “estallido” de la burbuja se ha analizado. Se ha comprobado la validez de los modelos existentes en la literatura y se propone uno nuevo. Este fenómeno se achaca a la incapacidad de la gran estructura formada tras la transición para vencer el gradiente adverso de presión, desplazarse hacia la pared y cerrar la burbuja.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Global linear instability theory is concerned with the temporal or spatial development of small-amplitude perturbations superposed upon laminar steady or time-periodic three-dimensional flows, which are inhomogeneous in two(and periodic in one)or all three spatial directions.After a brief exposition of the theory,some recent advances are reported. First, results are presented on the implementation of a Jacobian-free Newton–Krylov time-stepping method into a standard finite-volume aerodynamic code to obtain global linear instability results in flows of industrial interest. Second, connections are sought between established and more-modern approaches for structure identification in flows, such as proper orthogonal decomposition and Koopman modes analysis (dynamic mode decomposition), and the possibility to connect solutions of the eigenvalue problem obtained by matrix formation or time-stepping with those delivered by dynamic mode decomposition, residual algorithm, and proper orthogonal decomposition analysis is highlighted in the laminar regime; turbulent and three-dimensional flows are identified as open areas for future research. Finally, a new stable very-high-order finite-difference method is implemented for the spatial discretization of the operators describing the spatial biglobal eigenvalue problem, parabolized stability equation three-dimensional analysis, and the triglobal eigenvalue problem; it is shown that, combined with sparse matrix treatment, all these problems may now be solved on standard desktop computers

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As part of their development, the predictions of numerical wind flow models must be compared with measurements in order to estimate the uncertainty related to their use. Of course, the most rigorous such comparison is under blind conditions. The following paper includes a detailed description of three different wind flow models, all based on a Reynolds-averaged Navier-Stokes approach and two-equation k-ε closure, that were tested as part of the Bolund blind comparison (itself based on the Bolund experiment which measured the wind around a small coastal island). The models are evaluated in terms of predicted normalized wind speed and turbulent kinetic energy at 2 m and 5 m above ground level for a westerly wind direction. Results show that all models predict the mean velocity reasonably well; however accurate prediction of the turbulent kinetic energy remains achallenge.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Use of computational fluid dynamic (CFD) methods to predict the power production from wind entire wind farms in flat and complex terrain is presented in this paper. Two full 3D Navier–Stokes solvers for incompressible flow are employed that incorporate the k–ε and k–ω turbulence models respectively. The wind turbines (W/Ts) are modelled as momentum absorbers by means of their thrust coefficient using the actuator disk approach. The WT thrust is estimated using the wind speed one diameter upstream of the rotor at hub height. An alternative method that employs an induction-factor based concept is also tested. This method features the advantage of not utilizing the wind speed at a specific distance from the rotor disk, which is a doubtful approximation when a W/T is located in the wake of another and/or the terrain is complex. To account for the underestimation of the near wake deficit, a correction is introduced to the turbulence model. The turbulence time scale is bounded using the general “realizability” constraint for the turbulent velocities. Application is made on two wind farms, a five-machine one located in flat terrain and another 43-machine one located in complex terrain. In the flat terrain case, the combination of the induction factor method along with the turbulence correction provides satisfactory results. In the complex terrain case, there are some significant discrepancies with the measurements, which are discussed. In this case, the induction factor method does not provide satisfactory results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The estimation of power losses due to wind turbine wakes is crucial to understanding overall wind farm economics. This is especially true for large offshore wind farms, as it represents the primary source of losses in available power, given the regular arrangement of rotors, their generally largerdiameter and the lower ambient turbulence level, all of which conspire to dramatically affect wake expansion and, consequently, the power deficit. Simulation of wake effects in offshore wind farms (in reasonable computational time) is currently feasible using CFD tools. An elliptic CFD model basedon the actuator disk method and various RANS turbulence closure schemes is tested and validated using power ratios extracted from Horns Rev and Nysted wind farms, collected as part of the EU-funded UPWIND project. The primary focus of the present work is on turbulence modeling, as turbulent mixing is the main mechanism for flow recovery inside wind farms. A higher-order approach, based on the anisotropic RSM model, is tested to better take into account the imbalance in the length scales inside and outside of the wake, not well reproduced by current two-equation closure schemes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Algebraic topology (homology) is used to analyze the state of spiral defect chaos in both laboratory experiments and numerical simulations of Rayleigh-Bénard convection. The analysis reveals topological asymmetries that arise when non-Boussinesq effects are present. The asymmetries are found in different flow fields in the simulations and are robust to substantial alterations to flow visualization conditions in the experiment. However, the asymmetries are not observable using conventional statistical measures. These results suggest homology may provide a new and general approach for connecting spatiotemporal observations of chaotic or turbulent patterns to theoretical models.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La inmensa mayoría de los flujos de relevancia ingenieril permanecen sin estudiar en el marco de la teoría de estabilidad global. Esto es debido a dos razones fundamentalmente, las dificultades asociadas con el análisis de los flujos turbulentos y los inmensos recursos computacionales requeridos para obtener la solución del problema de autovalores asociado al análisis de inestabilidad de flujos tridimensionales, también conocido como problema TriGlobal. En esta tesis se aborda el problema asociado con la tridimensionalidad. Se ha desarrollado una metodología general para obtener soluciones de problemas de análisis modal de las inestabilidades lineales globales mediante el acoplamiento de métodos de evolución temporal, desarrollados en este trabajo, con códigos de mecánica de fluidos computacional de segundo orden, utilizados de forma general en la industria. Esta metodología consiste en la resolución del problema de autovalores asociado al análisis de inestabilidad mediante métodos de proyección en subespacios de Krylov, con la particularidad de que dichos subespacios son generados por medio de la integración temporal de un vector inicial usando cualquier código de mecánica de fluidos computacional. Se han elegido tres problemas desafiantes en función de la exigencia de recursos computacionales necesarios y de la complejidad física para la demostración de la presente metodología: (i) el flujo en el interior de una cavidad tridimensional impulsada por una de sus tapas, (ii) el flujo alrededor de un cilindro equipado con aletas helicoidales a lo largo su envergadura y (iii) el flujo a través de una cavidad abierta tridimensinal en ausencia de homogeneidades espaciales. Para la validación de la tecnología se ha obtenido la solución del problema TriGlobal asociado al flujo en la cavidad tridimensional, utilizando el método de evolución temporal desarrollado acoplado con los operadores numéricos de flujo incompresible del código CFD OpenFOAM (código libre). Los resultados obtenidos coinciden plentamente con la literatura. La aplicación de esta metodología al estudio de inestabilidades globales de flujos abiertos tridimensionales ha proporcionado por primera vez, información sobre la transición tridimensional de estos flujos. Además, la metodología ha sido adaptada para resolver problemas adjuntos TriGlobales, permitiendo el control de flujo basado en modificaciones de las inestabilidades globales. Finalmente, se ha demostrado que la cantidad moderada de los recursos computacionales requeridos para la solución del problema de valor propio TriGlobal usando este método numérico, junto a su versatilidad al poder acoplarse a cualquier código aerodinámico, permite la realización de análisis de inestabilidad global y control de flujos complejos de relevancia industrial. Abstract Most flows of engineering relevance still remain unexplored in a global instability theory context for two reasons. First, because of the difficulties associated with the analysis of turbulent flows and, second, for the formidable computational resources required for the solution of the eigenvalue problem associated with the instability analysis of three-dimensional base flows, also known as TriGlobal problem. In this thesis, the problem associated with the three-dimensionality is addressed by means of the development of a general approach to the solution of large-scale global linear instability analysis by coupling a time-stepping approach with second order aerodynamic codes employed in industry. Three challenging flows in the terms of required computational resources and physical complexity have been chosen for demonstration of the present methodology; (i) the flow inside a wall-bounded three-dimensional lid-driven cavity, (ii) the flow past a cylinder fitted with helical strakes and (iii) the flow over a inhomogeneous three-dimensional open cavity. Results in excellent agreement with the literature have been obtained for the three-dimensional lid-driven cavity by using this methodology coupled with the incompressible solver of the open-source toolbox OpenFOAM®, which has served as validation. Moreover, significant physical insight of the instability of three-dimensional open flows has been gained through the application of the present time-stepping methodology to the other two cases. In addition, modifications to the present approach have been proposed in order to perform adjoint instability analysis of three-dimensional base flows and flow control; validation and TriGlobal examples are presented. Finally, it has been demonstrated that the moderate amount of computational resources required for the solution of the TriGlobal eigenvalue problem using this method enables the performance of instability analysis and control of flows of industrial relevance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cuando una colectividad de sistemas dinámicos acoplados mediante una estructura irregular de interacciones evoluciona, se observan dinámicas de gran complejidad y fenómenos emergentes imposibles de predecir a partir de las propiedades de los sistemas individuales. El objetivo principal de esta tesis es precisamente avanzar en nuestra comprensión de la relación existente entre la topología de interacciones y las dinámicas colectivas que una red compleja es capaz de mantener. Siendo este un tema amplio que se puede abordar desde distintos puntos de vista, en esta tesis se han estudiado tres problemas importantes dentro del mismo que están relacionados entre sí. Por un lado, en numerosos sistemas naturales y artificiales que se pueden describir mediante una red compleja la topología no es estática, sino que depende de la dinámica que se desarrolla en la red: un ejemplo son las redes de neuronas del cerebro. En estas redes adaptativas la propia topología emerge como consecuencia de una autoorganización del sistema. Para conocer mejor cómo pueden emerger espontáneamente las propiedades comúnmente observadas en redes reales, hemos estudiado el comportamiento de sistemas que evolucionan según reglas adaptativas locales con base empírica. Nuestros resultados numéricos y analíticos muestran que la autoorganización del sistema da lugar a dos de las propiedades más universales de las redes complejas: a escala mesoscópica, la aparición de una estructura de comunidades, y, a escala macroscópica, la existencia de una ley de potencias en la distribución de las interacciones en la red. El hecho de que estas propiedades aparecen en dos modelos con leyes de evolución cuantitativamente distintas que siguen unos mismos principios adaptativos sugiere que estamos ante un fenómeno que puede ser muy general, y estar en el origen de estas propiedades en sistemas reales. En segundo lugar, proponemos una medida que permite clasificar los elementos de una red compleja en función de su relevancia para el mantenimiento de dinámicas colectivas. En concreto, estudiamos la vulnerabilidad de los distintos elementos de una red frente a perturbaciones o grandes fluctuaciones, entendida como una medida del impacto que estos acontecimientos externos tienen en la interrupción de una dinámica colectiva. Los resultados que se obtienen indican que la vulnerabilidad dinámica es sobre todo dependiente de propiedades locales, por tanto nuestras conclusiones abarcan diferentes topologías, y muestran la existencia de una dependencia no trivial entre la vulnerabilidad y la conectividad de los elementos de una red. Finalmente, proponemos una estrategia de imposición de una dinámica objetivo genérica en una red dada e investigamos su validez en redes con diversas topologías que mantienen regímenes dinámicos turbulentos. Se obtiene como resultado que las redes heterogéneas (y la amplia mayora de las redes reales estudiadas lo son) son las más adecuadas para nuestra estrategia de targeting de dinámicas deseadas, siendo la estrategia muy efectiva incluso en caso de disponer de un conocimiento muy imperfecto de la topología de la red. Aparte de la relevancia teórica para la comprensión de fenómenos colectivos en sistemas complejos, los métodos y resultados propuestos podrán dar lugar a aplicaciones en sistemas experimentales y tecnológicos, como por ejemplo los sistemas neuronales in vitro, el sistema nervioso central (en el estudio de actividades síncronas de carácter patológico), las redes eléctricas o los sistemas de comunicaciones. ABSTRACT The time evolution of an ensemble of dynamical systems coupled through an irregular interaction scheme gives rise to dynamics of great of complexity and emergent phenomena that cannot be predicted from the properties of the individual systems. The main objective of this thesis is precisely to increase our understanding of the interplay between the interaction topology and the collective dynamics that a complex network can support. This is a very broad subject, so in this thesis we will limit ourselves to the study of three relevant problems that have strong connections among them. First, it is a well-known fact that in many natural and manmade systems that can be represented as complex networks the topology is not static; rather, it depends on the dynamics taking place on the network (as it happens, for instance, in the neuronal networks in the brain). In these adaptive networks the topology itself emerges from the self-organization in the system. To better understand how the properties that are commonly observed in real networks spontaneously emerge, we have studied the behavior of systems that evolve according to local adaptive rules that are empirically motivated. Our numerical and analytical results show that self-organization brings about two of the most universally found properties in complex networks: at the mesoscopic scale, the appearance of a community structure, and, at the macroscopic scale, the existence of a power law in the weight distribution of the network interactions. The fact that these properties show up in two models with quantitatively different mechanisms that follow the same general adaptive principles suggests that our results may be generalized to other systems as well, and they may be behind the origin of these properties in some real systems. We also propose a new measure that provides a ranking of the elements in a network in terms of their relevance for the maintenance of collective dynamics. Specifically, we study the vulnerability of the elements under perturbations or large fluctuations, interpreted as a measure of the impact these external events have on the disruption of collective motion. Our results suggest that the dynamic vulnerability measure depends largely on local properties (our conclusions thus being valid for different topologies) and they show a non-trivial dependence of the vulnerability on the connectivity of the network elements. Finally, we propose a strategy for the imposition of generic goal dynamics on a given network, and we explore its performance in networks with different topologies that support turbulent dynamical regimes. It turns out that heterogeneous networks (and most real networks that have been studied belong in this category) are the most suitable for our strategy for the targeting of desired dynamics, the strategy being very effective even when the knowledge on the network topology is far from accurate. Aside from their theoretical relevance for the understanding of collective phenomena in complex systems, the methods and results here discussed might lead to applications in experimental and technological systems, such as in vitro neuronal systems, the central nervous system (where pathological synchronous activity sometimes occurs), communication systems or power grids.