28 resultados para Turboalbero MatLab Simulink modello dinamico mappe prestazionali turbina Allison
Resumo:
Este trabajo presenta un estudio sobre el funcionamiento y aplicaciones de las células de combustible de membrana tipo PEM, o de intercambio de protones, alimentadas con hidrógeno puro y oxigeno obtenido de aire comprimido. Una vez evaluado el proceso de dichas células y las variables que intervienen en el mismo, como presión, humedad y temperatura, se presenta una variedad de métodos para la instrumentación de tales variables así como métodos y sistemas para la estabilidad y control de las mismas, en torno a los valores óptimos para una mayor eficacia en el proceso. Tomando como variable principal a controlar la temperatura del proceso, y exponiendo los valores concretos en torno a 80 grados centígrados entre los que debe situarse, es realizado un modelo del proceso de calentamiento y evolución de la temperatura en función de la potencia del calentador resistivo en el dominio de la frecuencia compleja, y a su vez implementado un sistema de medición mediante sensores termopar de tipo K de respuesta casi lineal. La señal medida por los sensores es amplificada de manera diferencial mediante amplificadores de instrumentación INA2126, y es desarrollado un algoritmo de corrección de error de unión fría (error producido por la inclusión de nuevos metales del conector en el efecto termopar). Son incluidos los datos de test referentes al sistema de medición de temperatura , incluyendo las desviaciones o error respecto a los valores ideales de medida. Para la adquisición de datos y implementación de algoritmos de control, es utilizado un PC con el software Labview de National Instruments, que permite una programación intuitiva, versátil y visual, y poder realizar interfaces de usuario gráficas simples. La conexión entre el hardware de instrumentación y control de la célula y el PC se realiza mediante un interface de adquisición de datos USB NI 6800 que cuenta con un amplio número de salidas y entradas analógicas. Una vez digitalizadas las muestras de la señal medida, y corregido el error de unión fría anteriormente apuntado, es implementado en dicho software un controlador de tipo PID ( proporcional-integral-derivativo) , que se presenta como uno de los métodos más adecuados por su simplicidad de programación y su eficacia para el control de este tipo de variables. Para la evaluación del comportamiento del sistema son expuestas simulaciones mediante el software Matlab y Simulink determinando por tanto las mejores estrategias para desarrollar el control PID, así como los posibles resultados del proceso. En cuanto al sistema de calentamiento de los fluidos, es empleado un elemento resistor calentador, cuya potencia es controlada mediante un circuito electrónico compuesto por un detector de cruce por cero de la onda AC de alimentación y un sistema formado por un elemento TRIAC y su circuito de accionamiento. De manera análoga se expone el sistema de instrumentación para la presión de los gases en el circuito, variable que oscila en valores próximos a 3 atmosferas, para ello es empleado un sensor de presión con salida en corriente mediante bucle 4-20 mA, y un convertidor simple corriente a tensión para la entrada al sistema de adquisición de datos. Consecuentemente se presenta el esquema y componentes necesarios para la canalización, calentamiento y humidificación de los gases empleados en el proceso así como la situación de los sensores y actuadores. Por último el trabajo expone la relación de algoritmos desarrollados y un apéndice con información relativa al software Labview. ABTRACT This document presents a study about the operation and applications of PEM fuel cells (Proton exchange membrane fuel cells), fed with pure hydrogen and oxygen obtained from compressed air. Having evaluated the process of these cells and the variables involved on it, such as pressure, humidity and temperature, there is a variety of methods for implementing their control and to set up them around optimal values for greater efficiency in the process. Taking as primary process variable the temperature, and exposing its correct values around 80 degrees centigrade, between which must be placed, is carried out a model of the heating process and the temperature evolution related with the resistive heater power on the complex frequency domain, and is implemented a measuring system with thermocouple sensor type K performing a almost linear response. The differential signal measured by the sensor is amplified through INA2126 instrumentation amplifiers, and is developed a cold junction error correction algorithm (error produced by the inclusion of additional metals of connectors on the thermocouple effect). Data from the test concerning the temperature measurement system are included , including deviations or error regarding the ideal values of measurement. For data acquisition and implementation of control algorithms, is used a PC with LabVIEW software from National Instruments, which makes programming intuitive, versatile, visual, and useful to perform simple user interfaces. The connection between the instrumentation and control hardware of the cell and the PC interface is via a USB data acquisition NI 6800 that has a large number of analog inputs and outputs. Once stored the samples of the measured signal, and correct the error noted above junction, is implemented a software controller PID (proportional-integral-derivative), which is presented as one of the best methods for their programming simplicity and effectiveness for the control of such variables. To evaluate the performance of the system are presented simulations using Matlab and Simulink software thereby determining the best strategies to develop PID control, and possible outcomes of the process. As fluid heating system, is employed a heater resistor element whose power is controlled by an electronic circuit comprising a zero crossing detector of the AC power wave and a system consisting of a Triac and its drive circuit. As made with temperature variable it is developed an instrumentation system for gas pressure in the circuit, variable ranging in values around 3 atmospheres, it is employed a pressure sensor with a current output via 4-20 mA loop, and a single current to voltage converter to adequate the input to the data acquisition system. Consequently is developed the scheme and components needed for circulation, heating and humidification of the gases used in the process as well as the location of sensors and actuators. Finally the document presents the list of algorithms and an appendix with information about Labview software.
Resumo:
En este proyecto se ha desarrollado un código de MATLAB para el procesamiento de imágenes tomográficas 3D, de muestras de asfalto de carreteras en Polonia. Estas imágenes en 3D han sido tomadas por un equipo de investigación de la Universidad Tecnológica de Lodz (LUT). El objetivo de este proyecto es crear una herramienta que se pueda utilizar para estudiar las diferentes muestras de asfalto 3D y pueda servir para estudiar las pruebas de estrés que experimentan las muestras en el laboratorio. Con el objetivo final de encontrar soluciones a la degradación sufrida en las carreteras de Polonia, debido a diferentes causas, como son las condiciones meteorológicas. La degradación de las carreteras es un tema que se ha investigado desde hace muchos años, debido a la fuerte degradación causada por diferentes factores como son climáticos, la falta de mantenimiento o el tráfico excesivo en algunos casos. Es en Polonia, donde estos tres factores hacen que la composición de muchas carreteras se degrade rápidamente, sobre todo debido a las condiciones meteorológicas sufridas a lo largo del año, con temperaturas que van desde 30° C en verano a -20° C en invierno. Esto hace que la composición de las carreteras sufra mucho y el asfalto se levante, lo que aumenta los costos de mantenimiento y los accidentes de carretera. Este proyecto parte de la base de investigación que se lleva a cabo en la LUT, tratando de mejorar el análisis de las muestras de asfalto, por lo que se realizarán las pruebas de estrés y encontrar soluciones para mejorar el asfalto en las carreteras polacas. Esto disminuiría notablemente el costo de mantenimiento. A pesar de no entrar en aspectos muy técnicos sobre el asfalto y su composición, se ha necesitado realizar un estudio profundo sobre todas sus características, para crear un código capaz de obtener los mejores resultados. Por estas razones, se ha desarrollado en Matlab, los algoritmos que permiten el estudio de los especímenes 3D de asfalto. Se ha utilizado este software, ya que Matlab es una poderosa herramienta matemática que permite operar con matrices para realización de operaciones rápidamente, permitiendo desarrollar un código específico para el tratamiento y procesamiento de imágenes en 3D. Gracias a esta herramienta, estos algoritmos realizan procesos tales como, la segmentación de la imagen 3D, pre y post procesamiento de la imagen, filtrado o todo tipo de análisis microestructural de las muestras de asfalto que se están estudiando. El código presentado para la segmentación de las muestras de asfalto 3D es menos complejo en su diseño y desarrollo, debido a las herramientas de procesamiento de imágenes que incluye Matlab, que facilitan significativamente la tarea de programación, así como el método de segmentación utilizado. Respecto al código, este ha sido diseñado teniendo en cuenta el objetivo de facilitar el trabajo de análisis y estudio de las imágenes en 3D de las muestras de asfalto. Por lo tanto, el principal objetivo es el de crear una herramienta para el estudio de este código, por ello fue desarrollado para que pueda ser integrado en un entorno visual, de manera que sea más fácil y simple su utilización. Ese es el motivo por el cual todos estos algoritmos y funciones, que ha sido desarrolladas, se integrarán en una herramienta visual que se ha desarrollado con el GUIDE de Matlab. Esta herramienta ha sido creada en colaboración con Jorge Vega, y fue desarrollada en su proyecto final de carrera, cuyo título es: Segmentación microestructural de Imágenes en 3D de la muestra de asfalto utilizando Matlab. En esta herramienta se ha utilizado todo las funciones programadas en este proyecto, y tiene el objetivo de desarrollar una herramienta que permita crear un entorno gráfico intuitivo y de fácil uso para el estudio de las muestras de 3D de asfalto. Este proyecto se ha dividido en 4 capítulos, en un primer lugar estará la introducción, donde se presentarán los aspectos más importante que se va a componer el proyecto. En el segundo capítulo se presentarán todos los datos técnicos que se han tenido que estudiar para desarrollar la herramienta, entre los que cabe los tres temas más importantes que se han estudiado en este proyecto: materiales asfálticos, los principios de la tomografías 3D y el procesamiento de imágenes. Esta será la base para el tercer capítulo, que expondrá la metodología utilizada en la elaboración del código, con la explicación del entorno de trabajo utilizado en Matlab y todas las funciones de procesamiento de imágenes utilizadas. Además, se muestra todo el código desarrollado, así como una descripción teórica de los métodos utilizados para el pre-procesamiento y segmentación de las imagenes en 3D. En el capítulo 4, se mostrarán los resultados obtenidos en el estudio de una de las muestras de asfalto, y, finalmente, el último capítulo se basa en las conclusiones sobre el desarrollo de este proyecto. En este proyecto se ha llevado han realizado todos los puntos que se establecieron como punto de partida en el anteproyecto para crear la herramienta, a pesar de que se ha dejado para futuros proyectos nuevas posibilidades de este codigo, como por ejemplo, la detección automática de las diferentes regiones de una muestra de asfalto debido a su composición. Como se muestra en este proyecto, las técnicas de procesamiento de imágenes se utilizan cada vez más en multitud áreas, como pueden ser industriales o médicas. En consecuencia, este tipo de proyecto tiene multitud de posibilidades, y pudiendo ser la base para muchas nuevas aplicaciones que se puedan desarrollar en un futuro. Por último, se concluye que este proyecto ha contribuido a fortalecer las habilidades de programación, ampliando el conocimiento de Matlab y de la teoría de procesamiento de imágenes. Del mismo modo, este trabajo proporciona una base para el desarrollo de un proyecto más amplio cuyo alcance será una herramienta que puedas ser utilizada por el equipo de investigación de la Universidad Tecnológica de Lodz y en futuros proyectos. ABSTRACT In this project has been developed one code in MATLAB to process X-ray tomographic 3D images of asphalt specimens. These images 3D has been taken by a research team of the Lodz University of Technology (LUT). The aim of this project is to create a tool that can be used to study differents asphalt specimen and can be used to study them after stress tests undergoing the samples. With the final goal to find solutions to the degradation suffered roads in Poland due to differents causes, like weather conditions. The degradation of the roads is an issue that has been investigated many years ago, due to strong degradation suffered caused by various factors such as climate, poor maintenance or excessive traffic in some cases. It is in Poland where these three factors make the composition of many roads degrade rapidly, especially due to the weather conditions suffered along the year, with temperatures ranging from 30 o C in summer to -20 ° C in winter. This causes the roads suffers a lot and asphalt rises shortly after putting, increasing maintenance costs and road accident. This project part of the base that research is taking place at the LUT, in order to better analyze the asphalt specimens, they are tested for stress and find solutions to improve the asphalt on Polish roads. This would decrease remarkable maintenance cost. Although this project will not go into the technical aspect as asphalt and composition, but it has been required a deep study about all of its features, to create a code able to obtain the best results. For these reasons, there have been developed in Matlab, algorithms that allow the study of 3D specimens of asphalt. Matlab is a powerful mathematical tool, which allows arrays operate fastly, allowing to develop specific code for the treatment and processing of 3D images. Thus, these algorithms perform processes such as the multidimensional matrix sgementation, pre and post processing with the same filtering algorithms or microstructural analysis of asphalt specimen which being studied. All these algorithms and function that has been developed to be integrated into a visual tool which it be developed with the GUIDE of Matlab. This tool has been created in the project of Jorge Vega which name is: Microstructural segmentation of 3D images of asphalt specimen using Matlab engine. In this tool it has been used all the functions programmed in this project, and it has the aim to develop an easy and intuitive graphical environment for the study of 3D samples of asphalt. This project has been divided into 4 chapters plus the introduction, the second chapter introduces the state-of-the-art of the three of the most important topics that have been studied in this project: asphalt materials, principle of X-ray tomography and image processing. This will be the base for the third chapter, which will outline the methodology used in developing the code, explaining the working environment of Matlab and all the functions of processing images used. In addition, it will be shown all the developed code created, as well as a theoretical description of the methods used for preprocessing and 3D image segmentation. In Chapter 4 is shown the results obtained from the study of one of the specimens of asphalt, and finally the last chapter draws the conclusions regarding the development of this project.
Resumo:
Este documento contiene el proceso de prediseño y cálculo de un satélite de observación terrestre mediante imágenes fotográficas. El principal objetivo del proyecto es el diseño detallado del subsistema de potencia del satélite y a validación de un modelo de funcionamiento del sistema de potencia de las placas solares que alimentan al mismo y mediante la herramienta Simulink. La primera parte consiste en un diseño breve de los subsistemas y parámetros más importantes del satélite tales como el Sistema de Control de Actitud, Sistema de Control Térmico y Sistema de Comunicaciones, además de la estructura del satélite, la órbita en la que se encontrará, el lanzador que se usará para situarlo en órbita y la cámara que llevara a bordo para la captación de imágenes. La segunda parte trata del diseño del subsistema de potencia de una manera más detallada y de su simulación mediante una herramienta diseñada en el programa MATLAB con la herramienta Simulink. Se pretende usar la herramienta para simular el comportamiento del subsistema de potencia de un satélite conocido que será el UPMSat-2.
Resumo:
La relación entre la ingeniería y la medicina cada vez se está haciendo más estrecha, y debido a esto se ha creado una nueva disciplina, la bioingeniería, ámbito en el que se centra el proyecto. Este ámbito cobra gran interés debido al rápido desarrollo de nuevas tecnologías que en particular permiten, facilitan y mejoran la obtención de diagnósticos médicos respecto de los métodos tradicionales. Dentro de la bioingeniería, el campo que está teniendo mayor desarrollo es el de la imagen médica, gracias al cual se pueden obtener imágenes del interior del cuerpo humano con métodos no invasivos y sin necesidad de recurrir a la cirugía. Mediante métodos como la resonancia magnética, rayos X, medicina nuclear o ultrasonidos, se pueden obtener imágenes del cuerpo humano para realizar diagnósticos. Para que esas imágenes puedan ser utilizadas con ese fin hay que realizar un correcto tratamiento de éstas mediante técnicas de procesado digital. En ése ámbito del procesado digital de las imágenes médicas es en el que se ha realizado este proyecto. Gracias al desarrollo del tratamiento digital de imágenes con métodos de extracción de información, mejora de la visualización o resaltado de rasgos de interés de las imágenes, se puede facilitar y mejorar el diagnóstico de los especialistas. Por todo esto en una época en la que se quieren automatizar todos los procesos para mejorar la eficacia del trabajo realizado, el automatizar el procesado de las imágenes para extraer información con mayor facilidad, es muy útil. Actualmente una de las herramientas más potentes en el tratamiento de imágenes médicas es Matlab, gracias a su toolbox de procesado de imágenes. Por ello se eligió este software para el desarrollo de la parte práctica de este proyecto, su potencia y versatilidad simplifican la implementación de algoritmos. Este proyecto se estructura en dos partes. En la primera se realiza una descripción general de las diferentes modalidades de obtención de imágenes médicas y se explican los diferentes usos de cada método, dependiendo del campo de aplicación. Posteriormente se hace una descripción de las técnicas más importantes de procesado de imagen digital que han sido utilizadas en el proyecto. En la segunda parte se desarrollan cuatro aplicaciones en Matlab para ejemplificar el desarrollo de algoritmos de procesado de imágenes médicas. Dichas implementaciones demuestran la aplicación y utilidad de los conceptos explicados anteriormente en la parte teórica, como la segmentación y operaciones de filtrado espacial de la imagen, así como otros conceptos específicos. Las aplicaciones ejemplo desarrolladas han sido: obtención del porcentaje de metástasis de un tejido, diagnóstico de las deformidades de la columna vertebral, obtención de la MTF de una cámara de rayos gamma y medida del área de un fibroadenoma de una ecografía de mama. Por último, para cada una de las aplicaciones se detallará su utilidad en el campo de la imagen médica, los resultados obtenidos y su implementación en una interfaz gráfica para facilitar su uso. ABSTRACT. The relationship between medicine and engineering is becoming closer than ever giving birth to a recently appeared science field: bioengineering. This project is focused on this subject. This recent field is becoming more and more important due to the fast development of new technologies that provide tools to improve disease diagnosis, with regard to traditional procedures. In bioengineering the fastest growing field is medical imaging, in which we can obtain images of the inside of the human body without need of surgery. Nowadays by means of the medical modalities of magnetic resonance, X ray, nuclear medicine or ultrasound, we can obtain images to make a more accurate diagnosis. For those images to be useful within the medical field, they should be processed properly with some digital image processing techniques. It is in this field of digital medical image processing where this project is developed. Thanks to the development of digital image processing providing methods for data collection, improved visualization or data highlighting, diagnosis can be eased and facilitated. In an age where automation of processes is much sought, automated digital image processing to ease data collection is extremely useful. One of the most powerful image processing tools is Matlab, together with its image processing toolbox. That is the reason why that software was chosen to develop the practical algorithms in this project. This final project is divided into two main parts. Firstly, the different modalities for obtaining medical images will be described. The different usages of each method according to the application will also be specified. Afterwards we will give a brief description of the most important image processing tools that have been used in the project. Secondly, four algorithms in Matlab are implemented, to provide practical examples of medical image processing algorithms. This implementation shows the usefulness of the concepts previously explained in the first part, such as: segmentation or spatial filtering. The particular applications examples that have been developed are: calculation of the metastasis percentage of a tissue, diagnosis of spinal deformity, approximation to the MTF of a gamma camera, and measurement of the area of a fibroadenoma in an ultrasound image. Finally, for each of the applications developed, we will detail its usefulness within the medical field, the results obtained, and its implementation in a graphical user interface to ensure ease of use.
Resumo:
El presente proyecto parte de un programa utilizado en las prácticas de laboratorio en la asignatura Antenas y Compatibilidad Electromagnética del sexto semestre llamado SABOR, que pretende ser actualizado para que en las nuevas versiones de los sistemas operativos ofrecidos por la compañía Windows pueda ser operativo. El objetivo principal será diseñar e implementar nuevas funcionalidades así como desarrollar mejoras y corregir errores del mismo. Para su mejor entendimiento se ha creado una herramienta en entorno MATLAB para analizar uno de los tipos más comunes de Apertura que se utilizan actualmente, las bocinas. Dicha herramienta es una interfaz gráfica que tiene como entradas las variables elementales de diseño de la apertura como por ejemplo: dimensiones de la propia bocina o los parámetros generales comunes a todas ellas. A su vez, el software nos genera algunos de los parámetros de salida fundamentales de las antenas: Directividad, Ancho de haz, Centro de fase y Spillover. Para el correcto desarrollo del software se ha realizado numerosas pruebas con el fin de depurar y corregir errores con respecto a la anterior versión del SABOR. Por otra parte se ha hecho también hincapié en la funcionalidad del programa para que sea más intuitivo y evitar complejidades. El tipo de antena que se pretende estudiar es la bocina que consiste en una guía de onda en la cual el área de la sección se va incrementando progresivamente hasta un extremo abierto, que se comporta como una apertura. Se utilizan extensamente en satélites comerciales para coberturas globales desde órbitas geoestacionarias, pero el uso más común es como elemento de radiación para reflectores de antenas. Los tipos de bocinas que se van a examinar en la herramienta son: Sectorial H, Sectorial E, Piramidal, Cónica, Cónica Corrugada y Piramidal Corrugada. El proyecto está desarrollado de manera que pueda servir de información teórico-práctico de todo el software SABOR. Por ello, el documento además de revisar la teoría de las bocinas analizadas, mostrará la información relacionada con la programación orientado a objetos en entorno MATLAB cuyo objetivo propio es adquirir una nueva forma de pensamiento acerca del proceso de descomposición de problemas y desarrollo de soluciones de programación. Finalmente se ha creado un manual de autoayuda para dar soporte al software y se han incluido los resultados de diversas pruebas realizadas para poder observar todos los detalles de su funcionamiento, así como las conclusiones y líneas futuras de acción. ABSTRACT This Project comes from a program used in the labs of the subject Antennas and Electromagnetic Compatibility in the sixth semester called SABOR, which aims to be updated in order to any type of computer running a Windows operating systems(Windows 7 and subsequent versions). The main objectives are design and improve existing functionalities and develop new features. In addition, we will correct mistakes in earlier versions. For a better understanding a new custom tool using MATLAB environment has been created to analyze one of the most common types of apertura antenna which is used for the moment, horns. This tool is a graphical interface that has elementary design variables as a inputs, for example: Dimensions of the own horn or common general parameters of all horns. At the same time, the software generate us some of the fundamental parameters of antennas output like Directivity, Beamwidth, Phase centre and Spillover. This software has been performed numerous tests for the proper functioning of the Software and we have been cared in order to debug and correct errors that were detected in earlier versions of SABOR. In addition, it has also been emphasized the program's functionality in order to be more intuitive and avoiding unnecessary barriers or complexities. The type of antenna that we are going to study is the horn which consists of a waveguides which the section area has been gradually increasing to an open-ended, that behaves as an aperture. It is widely used in comercial satellites for global coverage from geostationary orbits. However, the most common use is radiating element for antenna reflectors. The types of horns which is going to be considered are: Rectangular H-plane sectorial, Rectangular E-plane sectorial, Rectangular Pyramidal, Circular, Corrugated Circular and Corrugated Pyramidal. The Project is developed so that it can be used as practical-theorical information around the SABOR software. Therefore, In addition to thoroughly reviewing the theory document of analyzed horns, it display information related to the object-oriented programming in MATLAB environment whose goal leads us to a new way of thinking about the process of decomposition of problems and solutions development programming. Finally, it has been created a self-help manual in order to support the software and has been included the results of different tests to observe all the details of their operations, as well as the conclusions and future action lines.
Resumo:
Dado que es difícil imaginar en el futuro una sociedad moderna donde la energía no juegue un papel fundamental y puesto que numerosos estudios han demostrado que el ritmo actual de consumo de combustibles es insostenible y perjudicial para la vida del planeta, es fundamental concienciar a la humanidad de que un cambio de tendencia no solo es necesario sino que es imperativo. No se trata de erradicar por completo el uso de fuentes de carácter fósil, pues en muchos países es su principal o incluso su única forma de obtener energía, sino de avanzar hacia un equilibrio en la generación, para lo que será vital permitir el desarrollo de energías limpias, aumentar la eficiencia de la tecnología y reducir el consumo. En este contexto se ha decidido construir un rotor eólico de pequeñas dimensiones que servirá como herramienta de estudio para alumnos de ingeniería. Para diseñar la turbina se ha desarrollado un modelo de programación informática que, basado en conceptos aerodinámicos, permite calcular la geometría de las palas en función de unas condiciones iniciales, estimar la potencia del rotor y obtener sus curvas de funcionamiento. Uno de los principales problemas de la tecnología eólica es su alta variabilidad, por ello se ha implementado un sistema de regulación de velocidad; se trata de un mecanismo que actúa sobre la orientación de las palas y permite regular la potencia de un generador eléctrico acoplado al rotor. Los aerogeneradores actuales recurren a este tipo de sistemas para tratar de suavizar los desequilibrios de potencia que puedan producir las ráfagas de viento. Se ha recurrido a un software de diseño asistido por ordenador para dibujar tanto el rotor como el sistema de regulación de velocidad. La mayoría de las piezas del rotor se han fabricado con ayuda de una impresora 3D, otras, las metálicas, se han tallado en aluminio mediante un torno. Aunque el programa informático que realiza los cálculos aerodinámicos devuelve datos teóricos a cerca del comportamiento del rotor, se ha creído necesario probar el molino mediante ensayos de laboratorio a fin de obtener un resultado más realista.Abstract Given that it’s difficult to imagine any modern society in the future where energy does not play a crucial role, and as many studies have shown that the actual rate of fuel consumption is unsustainable and harmful to life on the planet, it is essential to raise mankind’s awareness that a change in the current trend is not only necessary, but is also imperative. It is not a question of completely eradicating the use of fossil fuels, as in many countries they are the main or even the only way of generating energy, but rather working towards a balance in generation. To do so it is vital to encourage the development of clean energies, increase technological efficiency and reduce consumption. In view of this we have decided to build a small scale wind turbine rotor which can be used as a study tool for engineering students. To design the turbine a software programme was developed based on aerodynamic concepts, which allows us to calculate the geometry of the blades depending on certain initial conditions, estimate the power of the turbine, and obtain performance curves. One of the main issues with wind technology is its high variability, and therefore we implemented a speed regulation system consisting of a mechanism that varies the orientation of the blades and thus allows us to regulate the power of an electric generator attached to the turbine. Current wind powered generators use this type of system to try to smooth out spikes in power that may be caused by gusts of wind. We have used CAD software to design both the turbine itself and the speed regulation system. Most of the turbine parts have been manufactured with the aid of a 3D printer, while the other metallic parts have been turned on made a lathe in aluminum. Although the software programme which calculates the aerodynamics provide us theoretical data about the operation of the rotor. We consider it necessary to test the wind turbine in a lab to obtain more accurate results.
Resumo:
El presente trabajo parte con la intención de crear un entorno gráfico cómodo y amigable con el cual desarrollar la práctica relacionada con el estudio de las estrategias de estimación y compensación de movimiento aplicadas en los estándares de codificación de vídeo, y que forma parte de la asignatura “Televisión” de 4º de grado. Hasta ahora, se viene utilizado un entorno conocido como Cantata, proporcionado por Khoros, basado en la conexión de estructuras denominadas glifos a través de las cuales circula un flujo de datos (en nuestro caso, relacionado con el tratamiento de imágenes y vídeo). El presente trabajo adapta dicha estructura a las posibilidades gráficas de Matlab, incorporando, además, funcionalidades adicionales. En primer lugar, se expondrán los métodos de estimación y compensación que han sido programados en la herramienta desarrollada, así como las ventajas e inconvenientes asociados a cada uno de ellos. Dichos métodos de estimación y compensación de movimiento tratan de reducir la información a transmitir aprovechando la redundancia temporal presente entre las imágenes de una secuencia. El objetivo será establecer una correspondencia entre dos imágenes de una secuencia entre las que se ha producido un movimiento, calculando un conjunto de vectores en que representan dicho movimiento. Acto seguido, se describirán las claves de la interfaz gráfica desarrollada. En primer lugar se definirá el entorno gráfico habilitado por Khoros en el cual se ha desarrollado hasta ahora la práctica ya mencionada. Más tarde, introduciremos los aspectos más importantes para la creación de interfaces gráficas en Matlab, y se describirá brevemente una interfaz gráfica desarrollada anteriormente en el Grupo de Tratamiento de Imágenes (GTI) que ha sido tomada como referencia para el presente trabajo. Una vez presentado el entorno gráfico se describirán detalladamente los módulos elaborados para llevar a cabo la estimación y compensación de movimiento, además de otras funciones relacionadas con el tratamiento de imágenes y vídeo y la visualización de resultados. Por último, se propone un nuevo enunciado para la citada práctica, adaptado a la herramienta desarrollada y respetando, hasta donde ha sido posible, la estructura y objetivos docentes del enunciado original.
Resumo:
El presente proyecto consiste en el estudio detallado de las solicitaciones mecánicas a las que se encuentra sometido un álabe correspondiente a la sección de baja presión de una turbina de vapor. Primeramente se llevará a cabo una introducción a este tipo de turbomáquinas con el fin de definir conceptos relevantes como el grado de reacción o el triángulo de velocidades, necesarios para comprender el funcionamiento de estas máquinas. A medida que se avance en la explicación de los fundamentos teóricos de la turbina de vapor, se irá profundizando cada vez más hasta llegar a la corona de álabes del rotor. Aquí se describirán las fuerzas de distinta naturaleza que soportan los álabes en condiciones de trabajo, así como el principio de formación de humedad que ocurre en los últimos escalonamientos de la etapa de baja presión. Una vez revisados todos los conceptos teóricos de interés, se pasará a simular con ayuda de un programa de Elementos Finitos la distribución de velocidades y de presión del flujo de vapor a su paso por un álabe de la última corona del rotor. El objetivo que se persigue es cuantificar tanto las tensiones mecánicas como los desplazamientos por deformación a los que se encuentra sometido el álabe debido a la interacción con el fluido a elevada velocidad. Posteriormente, como ampliación a este modelo, se ha tenido en cuenta el efecto de los condensados (pequeñas gotas de agua) que se forman en los últimos escalonamientos de la turbina debido a grandes subenfriamientos locales del vapor. Estas gotas impactan sobre el lado de succión del perfil del álabe, por tanto su contribución a los valores de tensión y desplazamiento que experimenta el álabe también será cuantificada en el programa de Elementos Finitos. Por último, se hará una recopilación de las principales conclusiones obtenidas tras el modelo simulado por ordenador, así como de la importancia de la calidad del vapor para el buen funcionamiento de la turbomáquina.
Resumo:
El proyecto consta de dos partes principales y dos anexos. La primera es teórica, en ella realizamos; a modo de introducción, un estudio sobre el tratamiento digital de la imagen, desarrollando las principales técnicas de tratamiento y análisis de imágenes que pudimos estudiar durante la carrera. Una vez desgranado el análisis nos centraremos en la correlación digital de imagen, su evolución y distintas técnicas, donde nos centramos en la correlación cruzada normalizada que usamos posteriormente para la correlación de imágenes con Matlab. La segunda parte consiste en la implementación de un sencillo programa mediante Matlab en el que podremos evaluar y analizar las diferencias entre dos o más imágenes, pudiendo observar gráficamente la desviación en milímetros entre varias imágenes y su dirección con vectores. Posteriormente analizamos los resultados obtenidos y proponemos posibles mejoras para futuros proyectos de correlación de imágenes digitales. Por último, incluimos un par de anexos en los que incluimos un tutorial para automatizar acciones con Adobe Photoshop para facilitar el pretratamiento de fotografías antes de analizarlas con el script y una posible práctica de laboratorio para futuros alumnos de la escuela utilizando nuestro script de Matlab. ABSTRACT. The project involves two main parts and two annexes. The first is theoretical, it performed; by way of introduction, a study on digital image processing, developing the main treatment techniques and image analysis we were able to study along our career. Once shelled analysis we will focus on digital image correlation, evolution and different techniques, where we focus on normalized cross-correlation which we use later for the correlation of images with Matlab. The second part is the implementation of a simple program using Matlab where we can evaluate and analyze the differences between two or more images and can graphically see the deviation in millimeters between various images and their direction vectors. Then we analyze the results and propose possible improvements for future projects correlation of digital images. Finally, we have a couple of annexes in which we include a tutorial to automate actions with Adobe Photoshop to facilitate pretreatment photographs before analyzing the script and a possible lab for future school students using our Matlab script.
Resumo:
Sabor, Software de Análisis de BOcinas y Reflectores, es una herramienta didáctica la cual es utilizada en los laboratorios de la escuela para realizar prácticas de la asignatura Antenas y Compatibilidad Electromagnética, esta herramienta da a los alumnos una visión gráfica de lo que se enseña en clase de teoría de lo que son los campos en las aperturas de los reflectores. El proyector pretende sustituir al primer Sabor , ya que se queda obsoleto debido al sistema operativo, ya que funciona solo para Windows XP y con ordenadores de 32 bits, y también realizar mejoras y corregir errores de la versión anterior. El proyecto se ha desarrollado en Matlab que es un software matemático con grandes ventajas en cuanto a cálculo, desarrollo gráfico, y a la creación de nuevos algoritmos en su propio lenguaje y además está disponible para las plataformas Unix, Windows, Mac OSX y GNU/Linux. El objetivo del proyecto ha sido implementar, al igual que las versiones anteriores, cinco tipos de reflectores, como son: Parabólico, Offset, Cassegrain y los dos Dobles Offset, Cassegrain y Gregorian, y han sido analizados con un alimentador ideal ,cos-q, y por último los resultados obtenidos se han comparado con las versiones anteriores de Sabor, como son Sabor 3.0 y el primer Sabor. El proyecto consta de partes muy bien diferencias como son : La interpretación correctas de las formulas que se han utilizado para la realización de este proyecto ,dichas formulas han sido las dadas por el proyecto fin de carrera titulado Sabor3.0 de Francisco Egea Castejón. GUIDE, the graphical user interface development environment, con el que se creó: GUI, graphical user interface, que es la parte de Matlab dedicada a crear interfaces de usuario , herramienta utilizada para crear nuestras distintas ventanas dedicadas para la obtención de datos para analizar los distintos reflectores y para mostrar por pantalla los distintos resultados. Programación Orientada a Objetos de Matlab y sus distintas propiedades como son la herencia lo cual es muy útil para ocupar menos memoria ya que con un único método podemos realizar distintos cálculos con los distintos reflectores, objetos, solo cambiando las propiedades de cada objeto Y por último ha sido la realización de validación de los resultados con la ayuda de las versiones anteriores de Sabor, que están detallados en el capítulo 5 y la unión con bocinas del proyecto fin de carrera Análisis de Bocinas en Matlab de Javier Montero. Por otra parte tenemos las mejoras realizadas a las antiguas versiones como son: realización de registros que el usuario puede guardar y cargar con las distintas variables, también se ha realizado un fichero .txt en el que consta la amplitud del campo con su respectiva theta para que el usuario pueda visualizarlo en cualquier plataforma gráfica de datos como por ejemplo exel. ABSTRACT. Sabor, Software de Análisis de BOcinas y Reflectores, is a teaching tool, which is used to do laboratory practice in the subject of Antennas y Compatibilidad Electromagnética, this tool gives students a graphic view of the knowledge that are given in theory class in regard to aperture field of reflectors. This project intend to replace the first Sabor, because it is outdated, due to the operating system, because Sabor works only with Widows XP and computer with 32 bits, and to make improves and correct errors that were detected in the last version of Sabor too. This project has been carried out in Matlab, which is a mathematical software with high-level language for numerical computation, visualization and application development, and furthermore it is available to different platforms such as Unix, Windows ,Mac OSX and GNU/Linux This project has focused on implementing, the same as last versions, five kind of reflectors, such as : Parabolic, Offset, Cassegrain and two offset dual reflector Cassegrain y Gregorian ,and these were analysed with a cos-q ideal feed, and finally the results were checked with the versions of Sabor, as well as Sabor 3.0 and the first Sabor. This project consist of four parts: The correct interpretation of the formulas , which were used to do this project, from the final project Sabor3.0 by Francisco Egea Castejón. GUIDE, the graphical user interface development environment, tool that was used to create : GUI, graphical user interface, part of Matlab dedicated to create user interface. Object Oriented Programming of Matlab and different properties like inheritance, that is very useful for saving memory space because with only one method we can analyse different kind of reflectors, object, only change the properties of the object. At finally, the results were contrasted with the results from the previous versions and the link reflectors with horns from the final project Análisis de Bocinas en Matlab by Javier Montero. On the other hand, we have the improvements such as: registers and .txt file. The registers are used by user to save and load different variables and .txt file is useful because it allows to the user plotting in different platforms for example exel.
Resumo:
Nowadays, a lot of applications use digital images. For example in face recognition to detect and tag persons in photograph, for security control, and a lot of applications that can be found in smart cities, as speed control in roads or highways and cameras in traffic lights to detect drivers ignoring red light. Also in medicine digital images are used, such as x-ray, scanners, etc. These applications depend on the quality of the image obtained. A good camera is expensive, and the image obtained depends also on external factor as light. To make these applications work properly, image enhancement is as important as, for example, a good face detection algorithm. Image enhancement also can be used in normal photograph, for pictures done in bad light conditions, or just to improve the contrast of an image. There are some applications for smartphones that allow users apply filters or change the bright, colour or contrast on the pictures. This project compares four different techniques to use in image enhancement. After applying one of these techniques to an image, it will use better the whole available dynamic range. Some of the algorithms are designed for grey scale images and others for colour images. It is used Matlab software to develop and present the final results. These algorithms are Successive Means Quantization Transform (SMQT), Histogram Equalization, using Matlab function and own implemented function, and V transform. Finally, as conclusions, we can prove that Histogram equalization algorithm is the simplest of all, it has a wide variability of grey levels and it is not suitable for colour images. V transform algorithm is a good option for colour images. The algorithm is linear and requires low computational power. SMQT algorithm is non-linear, insensitive to gain and bias and it can extract structure of the data. RESUMEN. Hoy en día incontable número de aplicaciones usan imágenes digitales. Por ejemplo, para el control de la seguridad se usa el reconocimiento de rostros para detectar y etiquetar personas en fotografías o vídeos, para distintos usos de las ciudades inteligentes, como control de velocidad en carreteras o autopistas, cámaras en los semáforos para detectar a conductores haciendo caso omiso de un semáforo en rojo, etc. También en la medicina se utilizan imágenes digitales, como por ejemplo, rayos X, escáneres, etc. Todas estas aplicaciones dependen de la calidad de la imagen obtenida. Una buena cámara es cara, y la imagen obtenida depende también de factores externos como la luz. Para hacer que estas aplicaciones funciones correctamente, el tratamiento de imagen es tan importante como, por ejemplo, un buen algoritmo de detección de rostros. La mejora de la imagen también se puede utilizar en la fotografía no profesional o de consumo, para las fotos realizadas en malas condiciones de luz, o simplemente para mejorar el contraste de una imagen. Existen aplicaciones para teléfonos móviles que permiten a los usuarios aplicar filtros y cambiar el brillo, el color o el contraste en las imágenes. Este proyecto compara cuatro técnicas diferentes para utilizar el tratamiento de imagen. Se utiliza la herramienta de software matemático Matlab para desarrollar y presentar los resultados finales. Estos algoritmos son Successive Means Quantization Transform (SMQT), Ecualización del histograma, usando la propia función de Matlab y una nueva función que se desarrolla en este proyecto y, por último, una función de transformada V. Finalmente, como conclusión, podemos comprobar que el algoritmo de Ecualización del histograma es el más simple de todos, tiene una amplia variabilidad de niveles de gris y no es adecuado para imágenes en color. El algoritmo de transformada V es una buena opción para imágenes en color, es lineal y requiere baja potencia de cálculo. El algoritmo SMQT no es lineal, insensible a la ganancia y polarización y, gracias a él, se puede extraer la estructura de los datos.
Resumo:
El objetivo de este Trabajo de Fin de Grado es diseñar e implementar un conjunto completo de prácticas que cubran los contenidos matemáticos de las prácticas actualmente disponibles aplicándolos a la resolución de problemas específicos de la ingeniería biomédica. Estas prácticas se implementan en Matlab, del que la UPM dispone la licencia de campus. Las prácticas van precedidas de un planteamiento de cada problema biomédico. Este planteamiento incluye la deducción del modelo matemático que representa el problema en cuestión, salvo que sea excesivamente complicado (en comparación con el nivel exigible en el GIB), en cuyo caso se realizará una introducción teórica del proceso físico-químico a estudiar. Lo que se busca es que los problemas sean representativos de los temas estudiados a lo largo del grado en otras asignaturas. Las prácticas incluyen además un código Matlab ya escrito (total o parcialmente) o simplemente las instrucciones para la escritura del código por parte del alumno. Lo que se pretende con estas prácticas es reforzar el aprendizaje del alumno, tanto en sus aspectos de planteamiento/modelización de problemas, como en los de resolución, presentación escrita/gráfica de resultados y análisis de los mismos. Para lograr los objetivos expuestos se ha realizado en primer lugar una exhaustiva revisión bibliográfica sobre el tema, seguido del diseño de las prácticas, su implementación en Matlab y la prueba de los códigos. Una vez verificado su correcto funcionamiento, se redactó una guía del alumno, que contiene tanto el planteamiento teórico de la práctica como las instrucciones para su realización, y una guía del profesor, que incluye las soluciones de las prácticas y, en su caso, los problemas más habituales esperados en la resolución de las mismas. Se pretende con esta guía del profesor disponer de un manual que pueda ser fácilmente utilizado por posibles monitores de prácticas que ayuden al docente en su labor durante las sesiones de laboratorio de la asignatura.
Resumo:
El objetivo principal del proyecto es el desarrollo de un simulador de comunicaciones submarinas, que permite la caracterización del canal a través de datos reales que son usados para establecer la comunicación entre dos puntos, empleando diferentes técnicas de modulación. Dicho simulador, ofrece un interfaz gráfico sencillo de usar y ha sido desarrollado en MatLab, basado en Bellhop [14] y Simulink. Dicho simulador desarrollado se ha usado para realizar simulaciones en diferentes escenarios, con datos reales del océano extraídos de la base de datos WOD [2]. Se ha divido el proyecto en seis partes: INTRODUCCIÓN, MARCO TEÓRICO, IMPLEMENTACIÓN, CONCLUSIONES, MANUAL y PROPUESTA DE PRÁCTICA. Se describen a continuación: En la primera parte, se realiza una introducción al proyecto, indicando las motivaciones que llevaron a desarrollarlo, una breve introducción, los objetivos fijados y un análisis de la evolución histórica de las comunicaciones submarinas, hasta llegar al estado del arte existente. En la segunda parte se describen los fundamentos teóricos necesarios para el desarrollo del proyecto, por una parte lo relativo a las ondas acústicas y su propagación, y por otra lo relativo a las técnicas de modulación digital empleadas. En la tercera parte se describe la implementación del simulador, explicando las funcionalidades existentes y un resumen de cómo fue desarrollado y su arquitectura lo que facilita su uso para proyectos futuros. La cuarta parte analiza las simulaciones realizadas en diversos escenarios, empleando datos reales y datos artificiales para la temperatura y salinidad del agua. En la quinta parte se proporciona un manual de usuario del simulador desarrollado, para que pueda ser usado correctamente. Se describe también el procesado de extracción de datos de WOD para que sean compatibles. Por último, en propuesta didáctica se propone un guión de práctica para desarrollar en la asignatura P.A.S. ABSTRACT. The main goal of this project is the development of an underwater communication simulator, that allows the determination of the underwater channel through real data, using different modulation techniques. The simulator, offers a graphic interface, easy to use and developed in MatLab, based on Bellhop [14] and Simulink. The simulator was given the name of UWACOMSIM and it was used to simulate different scenarios, using data from the WOD [2]. The project is divided into six parts: INTRODUCTION, THEORETICAL FRAMEWORK, IMPLEMENTATION, CONCLUSIONS, MANUAL and DIDACTAL PROPOSAL. These parts are described bellow: In the first part an introduction is given, remarking the motivations that lead to develop the project. Also objectives are explained, a historical analysis of the underwater communications is given, and finish with the state of the art. Secondly, theoretical part is described. First, everything related with acoustics and wave propagation throgh water, secondly, digital modulation techniques are explained. In the third part, the simulation implementation is explained. Main functionalities are highlighted and a brief overview of the architecture is given. This part can be useful for related works. Simulations and conclusions about the results, are done in the fourth part. In this section, different significant scenarios are chosen, and many simulations are launched in order to analyse the data. In the fifth parth, a user manual is provided in order to show the user how to use the simulator and how to download data from WOD if needed. In the final part of the project, a laboratory session is proposed for the subject P.A.S.