19 resultados para Tubular Joints


Relevância:

20.00% 20.00%

Publicador:

Resumo:

El análisis de estructuras mediante modelos de elementos finitos representa una de las metodologías más utilizadas y aceptadas en la industria moderna. Para el análisis de estructuras tubulares de grandes dimensiones similares a las sobrestructuras de autobuses y autocares, los elementos de tipo viga son comúnmente utilizados y recomendados debido a que permiten obtener resultados satisfactorios con recursos computacionales reducidos. No obstante, los elementos de tipo viga presentan importante desventaja ya que las uniones modeladas presentan un comportamiento infinitamente rígido, esto determina un comportamiento mas rígido en las estructuras modeladas lo que se traduce en fuentes de error para las simulaciones estructurales (hasta un 60%). Mediante el modelado de uniones tubulares utilizando elementos de tipo área o volumen, se pueden obtener modelos más realistas, ya que las características topológicas de la unión propiamente dicha pueden ser reproducidas con un mayor nivel de detalle. Evitándose de esta manera los inconvenientes de los elementos de tipo viga. A pesar de esto, la modelización de estructuras tubulares de grandes dimensiones con elementos de tipo área o volumen representa una alternativa poco atractiva debido a la complejidad del proceso de modelados y al gran número de elementos resultantes lo que implica la necesidad de grandes recursos computacionales. El principal objetivo del trabajo de investigación presentado, fue el de obtener un nuevo tipo de elemento capaz de proporcionar estimaciones más exactas en el comportamiento de las uniones modeladas, al mismo tiempo manteniendo la simplicidad del procesos de modelado propio de los elementos de tipo viga regular. Con el fin de alcanzar los objetivos planteados, fueron realizadas diferentes metodologías e investigaciones. En base a las investigaciones realizadas, se obtuvo un modelo de unión viga alternativa en el cual se introdujeron un total seis elementos elásticos al nivel de la unión mediante los cuales es posible adaptar el comportamiento local de la misma. Adicionalmente, para la estimación de las rigideces correspondientes a los elementos elásticos se desarrollaron dos metodologías, una primera basada en la caracterización del comportamiento estático de uniones simples y una segunda basada en la caracterización del comportamiento dinámico a través de análisis modales. Las mejoras obtenidas mediante la implementación del modelo de unión alternativa fueron analizadas mediante simulaciones y validación experimental en una estructura tubular compleja representativa de sobrestructuras de autobuses y autocares. En base a los análisis comparativos realizados con la uniones simples modeladas y los experimentos de validación, se determinó que las uniones modeladas con elementos de tipo viga son entre un 5-60% más rígidas que uniones equivalentes modeladas con elementos área o volumen. También se determinó que las uniones área y volumen modeladas son entre un 5 a un 10% mas rígidas en comparación a uniones reales fabricadas. En los análisis realizados en la estructura tubular compleja, se obtuvieron mejoras importantes mediante la implementación del modelo de unión alternativa, las estimaciones del modelo viga se mejoraron desde un 49% hasta aproximadamente un 14%. ABSTRACT The analysis of structures with finite elements models represents one of the most utilized an accepted technique in the modern industry. For the analysis of large tubular structures similar to buses and coaches upper structures, beam type elements are utilized and recommended due to the fact that these elements provide satisfactory results at relatively reduced computational performances. However, the beam type elements have a main disadvantage determined by the fact that the modeled joints have an infinite rigid behavior, this shortcoming determines a stiffer behavior of the modeled structures which translates into error sources for the structural simulations (up to 60%). By modeling tubular junctions with shell and volume elements, more realistic models can be obtained, because the topological characteristics of the junction at the joint level can be reproduced more accurately. This way, the shortcoming that the beam type elements present can be solved. Despite this fact, modeling large tubular structures with shell or volume type elements represents an unattractive alternative due to the complexity of the modeling process and the large number of elements that result which imply the necessity of vast computational performances. The main objective of the research presented in this thesis was to develop a new beam type element that would be able to provide more accurate estimations for the local behavior of the modeled junctions at the same time maintaining the simplicity of the modeling process the regular beam type elements have. In order to reach the established objectives of the research activities, a series of different methodologies and investigations have been necessary. From these investigations an alternative beam T-junction model was obtained, in which a total of six elastic elements at the joint level were introduced, the elastic elements allowed us to adapt the local behavior of the modeled junctions. Additionally, for the estimation of the stiffness values corresponding to the elastic elements two methodologies were developed, one based on the T-junction’s static behavior and a second one based on the T-junction’s dynamic behavior by means of modal analysis. The improvements achieved throughout the implementation of this alternative T-junction model were analyzed though mechanical validation in a complex tubular structures that had a representative configuration for buses and coaches upper structures. From the comparative analyses of the finite element modeled T-junctions and mechanical experimental analysis, was determined that the beam type modeled T-junctions have a stiffer behavior compared to equivalent shell and volume modeled T-junctions with average differences ranging from 5-60% based on the profile configurations. It was also determined that the shell and volume models have a stiffer behavior compared to real T-junctions varying from 5 to 10% depending on the profile configurations. Based on the analysis of the complex tubular structure, significant improvements were obtained by the implementation of the alternative beam T-junction model, the model estimations were improved from a 49% to approximately 14%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present investigation addresses the overall and local mechanical performance of dissimilar joints of low carbon steel (CS) and stainless Steel (SS) thin sheets achieved by laser welding in case of heat source displacement from the weld gap centreline towards CS. Welding was performed on a Nd:YAG laser DY033 (3300 W) in a continuos wave (CW), keyhole mode. The tensile behavior of the joint different zones assessed by using a video-image based system (VIC-2D) reveals that the residual stress field, together with the positive difference in yield between the weld metal and the base materials protects the joint from being plastically deformed. The tensile loadings of flat transverse specimens generate the strain localization and failure in CS, far away from the weld.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to reduce costs and time while improving quality, durability and sustainability in structural concrete constructions, a widely used material nowadays, special care must be taken in some crucial phases of the project and execution, including the structure design and calculation, the dosage, dumping and curing of concrete: another important aspect is the proper design and execution of assembly plans and construction details. The framework, a name designating the whole reinforcement bars cage already assembled as shown in the drawings, can be made up of several components and implies higher or lower industrialization degree. The framework costs constitute about one third of the price per cubic meter placed in concrete works. The best solutions from all points of view are clearly those involving an easier processing to achieve the same goal, and consequently carrying a high degree of industrialization, meaning quality and safety in the work. This thesis aims to provide an indepth analysis of a relatively new type of anchoring by plate known as headed reinforcement bars, which can potentially replace standard or L-shaped hooks, improving the cleaning of construction details and enabling a faster, more flexible, and therefore a more economical assembly. A literature review on the topic and an overview of typical applications is provided, followed by some examples of specific applications in real projects. Since a strict theoretical formulation used to provide the design plate dimensions has not yet been put forward, an equation is proposed for the side-face blowout strength of the anchorage, based on the capacity of concrete to carry concentrated loads in cases in which no transverse reinforcement is provided. The correlation of the calculated ultimate load with experimental results available in the literature is given. Besides, the proposed formulation can be expanded to cases in which a certain development length is available: using a software for nonlinear finite element analysis oriented to the study of reinforced concrete, numerical tests on the bond-bearing interaction are performed. The thesis ends with a testing of eight corner joints subjected to a closing moment, held in the Structures Laboratory of the Polytechnic University of Madrid, aiming to check whether the design of such plates as stated is adequate for these elements and whether an element with plate-anchored reinforcement is equivalent to one with a traditional construction detail.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

From a physical perspective, a joint experiences fracturing processes that affect the rock at both microscopic and macroscopic levels. The result is a behaviour that follows a fractal structure. In the first place, for saw-tooth roughness profiles, the use of the triadic Koch curve appears to be adequate and by means of known correlations the JRC parameter is obtained from the angle measured on the basis of the height and length of the roughnesses. Therefore, JRC remains related to the geometric pattern that defines roughness by fractal analysis. In the second place, to characterise the geometry of irregularities with softened profiles, consequently, is proposed a characterisation of the fractal dimension of the joints with a circumference arc generator that is dependent on an average contact angle with regard to the mid-plane. The correlation between the JRC and the fractal dimension of the model is established with a defined statistical ratio.