17 resultados para Time-varying


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The usage of HTTP adaptive streaming (HAS) has become widely spread in multimedia services. Because it allows the service providers to improve the network resource utilization and user׳s Quality of Experience (QoE). Using this technology, the video playback interruption is reduced since the network and server status in addition to capability of user device, all are taken into account by HAS client to adapt the quality to the current condition. Adaptation can be done using different strategies. In order to provide optimal QoE, the perceptual impact of adaptation strategies from point of view of the user should be studied. However, the time-varying video quality due to the adaptation which usually takes place in a long interval introduces a new type of impairment making the subjective evaluation of adaptive streaming system challenging. The contribution of this paper is two-fold: first, it investigates the testing methodology to evaluate HAS QoE by comparing the subjective experimental outcomes obtained from ACR standardized method and a semi-continuous method developed to evaluate the long sequences. In addition, influence of using audiovisual stimuli to evaluate the video-related impairment is inquired. Second, impact of some of the adaptation technical factors including the quality switching amplitude and chunk size in combination with high range of commercial content type is investigated. The results of this study provide a good insight toward achieving appropriate testing method to evaluate HAS QoE, in addition to designing switching strategies with optimal visual quality.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electrodynamic tethered systems, in which an exposed portion of the conducting tether itself collects electrons from the ionosphere, promise to attain currents of 10 A or more in low Earth orbit. For the first time, another desirable feature of such bare-tether systems is reported and analyzed in detail: Collection by a bare tether is relatively insensitive to variations in electron density that are regularly encountered on each revolution of an orbit. This self-adjusting property of bare-tether systems occurs because the electron-collecting area on the tether is not fixed, but extends along its positively biased portion, and because the current varies as collecting length to a power greater than unity. How this adjustment to density variations follows from the basic collection law of thin cylinders is shown. The effect of variations in the motionally induced tether voltage is also analyzed. Both power and thruster modes are considered. The performance of bare-tether systems to tethered systems is compared using passive spherical collectors of fixed area, taking into consideration recent experimental results. Calculations taking into account motional voltage and plasma density around a realistic orbit for bare-tether systems suitable for space station applications are also presented.