18 resultados para Theory of Planned Behavior
Resumo:
This paper describes a knowledge-based approach for summarizing and presenting the behavior of hydrologic networks. This approach has been designed for visualizing data from sensors and simulations in the context of emergencies caused by floods. It follows a solution for event summarization that exploits physical properties of the dynamic system to automatically generate summaries of relevant data. The summarized information is presented using different modes such as text, 2D graphics and 3D animations on virtual terrains. The presentation is automatically generated using a hierarchical planner with abstract presentation fragments corresponding to discourse patterns, taking into account the characteristics of the user who receives the information and constraints imposed by the communication devices (mobile phone, computer, fax, etc.). An application following this approach has been developed for a national hydrologic information infrastructure of Spain.
Resumo:
The linearized solution for the two-dimensional flow over an inlet of general form has been derived, assuming incompressible potential flow. With this theory suction forces at sharp inlet lips can be estimated and ideal inlets can be designed.
Resumo:
In this work, we explain the behavior of multijunction solar cells under non-uniform (spatially and in spectral content) light profiles in general and in particular when Gaussian light profiles cause a photo-generated current density, which exceeds locally the peak current density of the tunnel junction. We have analyzed the implications on the tunnel junction's limitation, that is, in the loss of efficiency due to the appearance of a dip in the I–V curve. For that, we have carried out simulations with our three-dimensional distributed model for multijunction solar cells, which contemplates a full description of the tunnel junction and also takes into account the lateral resistances in the tunnel junction. The main findings are that the current density photo-generated spreads out through the lateral resistances of the device, mainly through the tunnel junction layers and the back contact. Therefore, under non-uniform light profiles these resistances are determinant not only to avoid the tunnel junction's limitation but also for mitigating losses in the fill factor. Therefore, taking into account these lateral resistances could be the key for jointly optimizing the concentrator photovoltaic system (concentrator optics, front grid layout and semiconductor structure)