21 resultados para Structural equation modelling
Resumo:
In the present work a constitutive model is developed which permits the simulation of the low cycle fatigue behaviour in steel framed structures. In the elaboration of this model, the concepts of the mechanics of continuum medium are applied on lumped dissipative models. In this type of formulation an explicit coupling between the damage and the structural mechanical behaviour is employed, allowing the possibility of considering as a whole different coupled phenomena. A damage index is defined in order to model elastoplasticity coupled with damage and fatigue damage.
Resumo:
During launch, satellite and their equipment are subjected to loads of random nature and with a wide frequency range. Their vibro-acoustic response is an important issue to be analysed, for example for folded solar arrays and antennas. The main issue at low modal density is the modelling combinations engaging air layers, structures and external fluid. Depending on the modal density different methodologies, as FEM, BEM and SEA should be considered. This work focuses on the analysis of different combinations of the methodologies previously stated used in order to characterise the vibro-acoustic response of two rectangular sandwich structure panels isolated and engaging an air layer between them under a diffuse acoustic field. Focusing on the modelling of air layers, different models are proposed. To illustrate the phenomenology described and studied, experimental results from an acoustic test on an ARA-MKIII solar array in folded configuration are presented along with numerical results.
Resumo:
Innovation studies have been interest of not only the scholars from various fields such as economics, management and sociology but also industrial practitioners and policy makers. In this vast and fruitful field, the theory of diffusion of innovations, which has been driven by a sociological approach, has played a vital role in our understanding of the mechanisms behind industrial change. In this paper, our aim is to give a state of art review of diffusion of innovation models in a structural and conceptual way with special reference to photovoltaic. We argue firstly, as an underlying background, how diffusion of innovations theory differs from other innovation studies. Secondly we give a brief taxonomical review of modelling methodologies together with comparative discussions. And finally we put the wealth of modelling in the context of photovoltaic diffusion and suggest some future directions.
Resumo:
Momentum, mass and energy balance laws provide the tools for the study of the evolution of an icefield covering a subglacial lake. The ice is described as a non-Newtonian fluid with a power-law constitutive relationship with temperature- and stress-dependent viscosity (Glen?s law) [1]. The phase transition mechanisms at the air/ice and ice/water interfaces yield moving boundary formulations, and lake hydrodynamics requires equation reduction for treating the turbulence.
Resumo:
The need to modal semi-rigid behaviour of joints to analyze the seismic response of bridges arises when retrofitting devices such as cables or bolts are introduced in otherwise free joints or when the design takes advantage of the plastification of structural sections to impose energy dissipation though their ductile behaviour. The paper presents some preliminary results of a parametric study carried out using s1mplified computational models. Two instances where semirigid connection play a role in the seismic response of bridges have been discussed. The ongoing research from which this paper is extracted is intended to enhance understanding on the effectivness of various bridge retrofitting measures and to provide information that may be used to calibrate some ECS-2 rules. Finally, it is hoped that the development of reliable simplified techniques for nonlinear analysis will provide designers with useful tools to examine behavior and ultimately improve seismic safety in actual bridges.
Resumo:
El estudio desarrollado en este trabajo de tesis se centra en la modelización numérica de la fase de propagación de los deslizamientos rápidos de ladera a través del método sin malla Smoothed Particle Hydrodynamics (SPH). Este método tiene la gran ventaja de permitir el análisis de problemas de grandes deformaciones evitando operaciones costosas de remallado como en el caso de métodos numéricos con mallas tal como el método de los Elementos Finitos. En esta tesis, particular atención viene dada al rol que la reología y la presión de poros desempeñan durante estos eventos. El modelo matemático utilizado se basa en la formulación de Biot-Zienkiewicz v - pw, que representa el comportamiento, expresado en términos de velocidad del esqueleto sólido y presiones de poros, de la mezcla de partículas sólidas en un medio saturado. Las ecuaciones que gobiernan el problema son: • la ecuación de balance de masa de la fase del fluido intersticial, • la ecuación de balance de momento de la fase del fluido intersticial y de la mezcla, • la ecuación constitutiva y • una ecuación cinemática. Debido a sus propiedades geométricas, los deslizamientos de ladera se caracterizan por tener una profundidad muy pequeña frente a su longitud y a su anchura, y, consecuentemente, el modelo matemático mencionado anteriormente se puede simplificar integrando en profundidad las ecuaciones, pasando de un modelo 3D a 2D, el cual presenta una combinación excelente de precisión, sencillez y costes computacionales. El modelo propuesto en este trabajo se diferencia de los modelos integrados en profundidad existentes por incorporar un ulterior modelo capaz de proveer información sobre la presión del fluido intersticial a cada paso computacional de la propagación del deslizamiento. En una manera muy eficaz, la evolución de los perfiles de la presión de poros está numéricamente resuelta a través de un esquema explicito de Diferencias Finitas a cada nodo SPH. Este nuevo enfoque es capaz de tener en cuenta la variación de presión de poros debida a cambios de altura, de consolidación vertical o de cambios en las tensiones totales. Con respecto al comportamiento constitutivo, uno de los problemas principales al modelizar numéricamente deslizamientos rápidos de ladera está en la dificultad de simular con la misma ley constitutiva o reológica la transición de la fase de iniciación, donde el material se comporta como un sólido, a la fase de propagación donde el material se comporta como un fluido. En este trabajo de tesis, se propone un nuevo modelo reológico basado en el modelo viscoplástico de Perzyna, pensando a la viscoplasticidad como a la llave para poder simular tanto la fase de iniciación como la de propagación con el mismo modelo constitutivo. Con el fin de validar el modelo matemático y numérico se reproducen tanto ejemplos de referencia con solución analítica como experimentos de laboratorio. Finalmente, el modelo se aplica a casos reales, con especial atención al caso del deslizamiento de 1966 en Aberfan, mostrando como los resultados obtenidos simulan con éxito estos tipos de riesgos naturales. The study developed in this thesis focuses on the modelling of landslides propagation with the Smoothed Particle Hydrodynamics (SPH) meshless method which has the great advantage of allowing to deal with large deformation problems by avoiding expensive remeshing operations as happens for mesh methods such as, for example, the Finite Element Method. In this thesis, special attention is given to the role played by rheology and pore water pressure during these natural hazards. The mathematical framework used is based on the v - pw Biot-Zienkiewicz formulation, which represents the behaviour, formulated in terms of soil skeleton velocity and pore water pressure, of the mixture of solid particles and pore water in a saturated media. The governing equations are: • the mass balance equation for the pore water phase, • the momentum balance equation for the pore water phase and the mixture, • the constitutive equation and • a kinematic equation. Landslides, due to their shape and geometrical properties, have small depths in comparison with their length or width, therefore, the mathematical model aforementioned can then be simplified by depth integrating the equations, switching from a 3D to a 2D model, which presents an excellent combination of accuracy, computational costs and simplicity. The proposed model differs from previous depth integrated models by including a sub-model able to provide information on pore water pressure profiles at each computational step of the landslide's propagation. In an effective way, the evolution of the pore water pressure profiles is numerically solved through a set of 1D Finite Differences explicit scheme at each SPH node. This new approach is able to take into account the variation of the pore water pressure due to changes of height, vertical consolidation or changes of total stress. Concerning the constitutive behaviour, one of the main issues when modelling fast landslides is the difficulty to simulate with the same constitutive or rheological model the transition from the triggering phase, where the landslide behaves like a solid, to the propagation phase, where the landslide behaves in a fluid-like manner. In this work thesis, a new rheological model is proposed, based on the Perzyna viscoplastic model, thinking of viscoplasticity as the key to close the gap between the triggering and the propagation phase. In order to validate the mathematical model and the numerical approach, benchmarks and laboratory experiments are reproduced and compared to analytical solutions when possible. Finally, applications to real cases are studied, with particular attention paid to the Aberfan flowslide of 1966, showing how the mathematical model accurately and successfully simulate these kind of natural hazards.