27 resultados para Stochastic Dominance
Resumo:
A hybrid Eulerian-Lagrangian approach is employed to simulate heavy particle dispersion in turbulent pipe flow. The mean flow is provided by the Eulerian simulations developed by mean of JetCode, whereas the fluid fluctuations seen by particles are prescribed by a stochastic differential equation based on normalized Langevin. The statistics of particle velocity are compared to LES data which contain detailed statistics of velocity for particles with diameter equal to 20.4 µm. The model is in good agreement with the LES data for axial mean velocity whereas rms of axial and radial velocities should be adjusted.
Resumo:
Los sistemas de recomendación son un tipo de solución al problema de sobrecarga de información que sufren los usuarios de los sitios web en los que se pueden votar ciertos artículos. El sistema de recomendación de filtrado colaborativo es considerado como el método con más éxito debido a que sus recomendaciones se hacen basándose en los votos de usuarios similares a un usuario activo. Sin embargo, el método de filtrado de colaboración tradicional selecciona usuarios insuficientemente representativos como vecinos de cada usuario activo. Esto significa que las recomendaciones hechas a posteriori no son lo suficientemente precisas. El método propuesto en esta tesis realiza un pre-filtrado del proceso, mediante el uso de dominancia de Pareto, que elimina los usuarios menos representativos del proceso de selección k-vecino y mantiene los más prometedores. Los resultados de los experimentos realizados en MovieLens y Netflix muestran una mejora significativa en todas las medidas de calidad estudiadas en la aplicación del método propuesto. ABSTRACTRecommender systems are a type of solution to the information overload problem suffered by users of websites on which they can rate certain items. The Collaborative Filtering Recommender System is considered to be the most successful approach as it make its recommendations based on votes of users similar to an active user. Nevertheless, the traditional collaborative filtering method selects insufficiently representative users as neighbors of each active user. This means that the recommendations made a posteriori are not precise enough. The method proposed in this thesis performs a pre-filtering process, by using Pareto dominance, which eliminates the less representative users from the k-neighbor selection process and keeps the most promising ones. The results from the experiments performed on Movielens and Netflix show a significant improvement in all the quality measures studied on applying the proposed method.
Resumo:
We introduce a dominance intensity measuring method to derive a ranking of alternatives to deal with incomplete information in multi-criteria decision-making problems on the basis of multi-attribute utility theory (MAUT) and fuzzy sets theory. We consider the situation where there is imprecision concerning decision-makers’ preferences, and imprecise weights are represented by trapezoidal fuzzy weights.The proposed method is based on the dominance values between pairs of alternatives. These values can be computed by linear programming, as an additive multi-attribute utility model is used to rate the alternatives. Dominance values are then transformed into dominance intensity measures, used to rank the alternatives under consideration. Distances between fuzzy numbers based on the generalization of the left and right fuzzy numbers are utilized to account for fuzzy weights. An example concerning the selection of intervention strategies to restore an aquatic ecosystem contaminated by radionuclides illustrates the approach. Monte Carlo simulation techniques have been used to show that the proposed method performs well for different imprecision levels in terms of a hit ratio and a rank-order correlation measure.
Resumo:
In this paper a new method for fault isolation in a class of continuous-time stochastic dynamical systems is proposed. The method is framed in the context of model-based analytical redundancy, consisting in the generation of a residual signal by means of a diagnostic observer, for its posterior analysis. Once a fault has been detected, and assuming some basic a priori knowledge about the set of possible failures in the plant, the isolation task is then formulated as a type of on-line statistical classification problem. The proposed isolation scheme employs in parallel different hypotheses tests on a statistic of the residual signal, one test for each possible fault. This isolation method is characterized by deriving for the unidimensional case, a sufficient isolability condition as well as an upperbound of the probability of missed isolation. Simulation examples illustrate the applicability of the proposed scheme.
Resumo:
This paper contributes with a unified formulation that merges previ- ous analysis on the prediction of the performance ( value function ) of certain sequence of actions ( policy ) when an agent operates a Markov decision process with large state-space. When the states are represented by features and the value function is linearly approxi- mated, our analysis reveals a new relationship between two common cost functions used to obtain the optimal approximation. In addition, this analysis allows us to propose an efficient adaptive algorithm that provides an unbiased linear estimate. The performance of the pro- posed algorithm is illustrated by simulation, showing competitive results when compared with the state-of-the-art solutions.
Resumo:
Dominance measuring methods are a new approach to deal with complex decision-making problems with imprecise information. These methods are based on the computation of pairwise dominance values and exploit the information in the dominance matrix in dirent ways to derive measures of dominance intensity and rank the alternatives under consideration. In this paper we propose a new dominance measuring method to deal with ordinal information about decision-maker preferences in both weights and component utilities. It takes advantage of the centroid of the polytope delimited by ordinal information and builds triangular fuzzy numbers whose distances to the crisp value 0 constitute the basis for the de?nition of a dominance intensity measure. Monte Carlo simulation techniques have been used to compare the performance of this method with other existing approaches.
Resumo:
Los decisores cada vez se enfrentan a problemas más complejos en los que tomar una decisión implica tener que considerar simultáneamente muchos criterios que normalmente son conflictivos entre sí. En la mayoría de los problemas de decisión es necesario considerar criterios económicos, sociales y medioambientales. La Teoría de la Decisión proporciona el marco adecuado para poder ayudar a los decisores a resolver estos problemas de decisión complejos, al permitir considerar conjuntamente la incertidumbre existente sobre las consecuencias de cada alternativa en los diferentes atributos y la imprecisión sobre las preferencias de los decisores. En esta tesis doctoral nos centramos en la imprecisión de las preferencias de los decisores cuando éstas pueden ser representadas mediante una función de utilidad multiatributo aditiva. Por lo tanto, consideramos imprecisión tanto en los pesos como en las funciones de utilidad componentes de cada atributo. Se ha considerado el caso en que la imprecisión puede ser representada por intervalos de valores o bien mediante información ordinal, en lugar de proporcionar valores concretos. En este sentido, hemos propuesto métodos que permiten ordenar las diferentes alternativas basados en los conceptos de intensidad de dominación o intensidad de preferencia, los cuales intentan medir la fuerza con la que cada alternativa es preferida al resto. Para todos los métodos propuestos se ha analizado su comportamiento y se ha comparado con los más relevantes existentes en la literatura científica que pueden ser aplicados para resolver este tipo de problemas. Para ello, se ha realizado un estudio de simulación en el que se han usado dos medidas de eficiencia (hit ratio y coeficiente de correlación de Kendall) para comparar los diferentes métodos. ABSTRACT Decision makers increasingly face complex decision-making problems where they have to simultaneously consider many often conflicting criteria. In most decision-making problems it is necessary to consider economic, social and environmental criteria. Decision making theory provides an adequate framework for helping decision makers to make complex decisions where they can jointly consider the uncertainty about the performance of each alternative for each attribute, and the imprecision of the decision maker's preferences. In this PhD thesis we focus on the imprecision of the decision maker's preferences represented by an additive multiattribute utility function. Therefore, we consider the imprecision of weights, as well as of component utility functions for each attribute. We consider the case in which the imprecision is represented by ranges of values or by ordinal information rather than precise values. In this respect, we propose methods for ranking alternatives based on notions of dominance intensity, also known as preference intensity, which attempt to measure how much more preferred each alternative is to the others. The performance of the propose methods has been analyzed and compared against the leading existing methods that are applicable to this type of problem. For this purpose, we conducted a simulation study using two efficiency measures (hit ratio and Kendall correlation coefficient) to compare the different methods.
Resumo:
In this paper, a computer-based tool is developed to analyze student performance along a given curriculum. The proposed software makes use of historical data to compute passing/failing probabilities and simulates future student academic performance based on stochastic programming methods (MonteCarlo) according to the specific university regulations. This allows to compute the academic performance rates for the specific subjects of the curriculum for each semester, as well as the overall rates (the set of subjects in the semester), which are the efficiency rate and the success rate. Additionally, we compute the rates for the Bachelors degree, which are the graduation rate measured as the percentage of students who finish as scheduled or taking an extra year and the efficiency rate (measured as the percentage of credits of the curriculum with respect to the credits really taken). In Spain, these metrics have been defined by the National Quality Evaluation and Accreditation Agency (ANECA). Moreover, the sensitivity of the performance metrics to some of the parameters of the simulator is analyzed using statistical tools (Design of Experiments). The simulator has been adapted to the curriculum characteristics of the Bachelor in Engineering Technologies at the Technical University of Madrid(UPM).
Quality-optimization algorithm based on stochastic dynamic programming for MPEG DASH video streaming
Resumo:
In contrast to traditional push-based protocols, adaptive streaming techniques like Dynamic Adaptive Streaming over HTTP (DASH) fix attention on the client, who dynamically requests different-quality portions of the content to cope with a limited and variable bandwidth but aiming at maximizing the quality perceived by the user. Since DASH adaptation logic at the client is not covered by the standard, we propose a solution based on Stochastic Dynamic Programming (SDP) techniques to find the optimal request policies that guarantee the users' Quality of Experience (QoE). Our algorithm is evaluated in a simulated streaming session and is compared with other adaptation approaches. The results show that our proposal outperforms them in terms of QoE, requesting higher qualities on average.
Resumo:
Dominance measuring methods are an approach for dealing with complex decision-making problems with imprecise information within multi-attribute value/utility theory. These methods are based on the computation of pairwise dominance values and exploit the information in the dominance matrix in different ways to derive measures of dominance intensity and rank the alternatives under consideration. In this paper we review dominance measuring methods proposed in the literature for dealing with imprecise information (intervals, ordinal information or fuzzy numbers) about decision-makers? preferences and their performance in comparison with other existing approaches, like SMAA and SMAA-II or Sarabando and Dias? method.
Resumo:
We consider a groupdecision-making problem within multi-attribute utility theory, in which the relative importance of decisionmakers (DMs) is known and their preferences are represented by means of an additive function. We allow DMs to provide veto values for the attribute under consideration and build veto and adjust functions that are incorporated into the additive model. Veto functions check whether alternative performances are within the respective veto intervals, making the overall utility of the alternative equal to 0, where as adjust functions reduce the utilty of the alternative performance to match the preferences of other DMs. Dominance measuring methods are used to account for imprecise information in the decision-making scenario and to derive a ranking of alternatives for each DM. Specifically, ordinal information about the relative importance of criteria is provided by each DM. Finally, an extension of Kemeny's method is used to aggregate the alternative rankings from the DMs accounting for the irrelative importance.
Resumo:
The operating theatres are the engine of the hospitals; proper management of the operating rooms and its staff represents a great challenge for managers and its results impact directly in the budget of the hospital. This work presents a MILP model for the efficient schedule of multiple surgeries in Operating Rooms (ORs) during a working day. This model considers multiple surgeons and ORs and different types of surgeries. Stochastic strategies are also implemented for taking into account the uncertain in surgery durations (pre-incision, incision, post-incision times). In addition, a heuristic-based methods and a MILP decomposition approach is proposed for solving large-scale ORs scheduling problems in computational efficient way. All these computer-aided strategies has been implemented in AIMMS, as an advanced modeling and optimization software, developing a user friendly solution tool for the operating room management under uncertainty.