16 resultados para Sierpinski network, generalized Sierpinski network, fractal dimension
Filtro por publicador
- Aberystwyth University Repository - Reino Unido (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (2)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (1)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (2)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (2)
- Aston University Research Archive (6)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital | Sistema Integrado de Documentación | UNCuyo - UNCUYO. UNIVERSIDAD NACIONAL DE CUYO. (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (13)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (9)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (3)
- Boston University Digital Common (2)
- Bulgarian Digital Mathematics Library at IMI-BAS (3)
- Cambridge University Engineering Department Publications Database (13)
- CentAUR: Central Archive University of Reading - UK (8)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (34)
- Cochin University of Science & Technology (CUSAT), India (3)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- Dalarna University College Electronic Archive (1)
- Digital Commons at Florida International University (3)
- Duke University (2)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (3)
- FUNDAJ - Fundação Joaquim Nabuco (1)
- Helda - Digital Repository of University of Helsinki (78)
- Indian Institute of Science - Bangalore - Índia (197)
- Institutional Repository of Leibniz University Hannover (2)
- Instituto Politécnico do Porto, Portugal (7)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (2)
- Publishing Network for Geoscientific & Environmental Data (3)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (7)
- Queensland University of Technology - ePrints Archive (387)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (1)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (1)
- Repositório Institucional da Universidade Tecnológica Federal do Paraná (RIUT) (2)
- Repositorio Institucional de la Universidad de Málaga (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (101)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- Universidad de Alicante (1)
- Universidad del Rosario, Colombia (3)
- Universidad Politécnica de Madrid (16)
- Universidade Federal do Pará (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (11)
- Universidade Técnica de Lisboa (1)
- Universitat de Girona, Spain (1)
- Université de Montréal, Canada (2)
- University of Michigan (3)
- University of Queensland eSpace - Australia (6)
- University of Southampton, United Kingdom (1)
- WestminsterResearch - UK (1)
Resumo:
Bayesian network classifiers are a powerful machine learning tool. In order to evaluate the expressive power of these models, we compute families of polynomials that sign-represent decision functions induced by Bayesian network classifiers. We prove that those families are linear combinations of products of Lagrange basis polynomials. In absence of V-structures in the predictor sub-graph, we are also able to prove that this family of polynomials does in- deed characterize the specific classifier considered. We then use this representation to bound the number of decision functions representable by Bayesian network classifiers with a given structure and we compare these bounds to the ones obtained using Vapnik-Chervonenkis dimension.