37 resultados para Shock tubes.
Resumo:
Outline: • Introduction • Fundamental Physics of the Laser-Plasma Interaction in Laser Shock Processing • Theoretical/Computational Model Description • Some Results. Analysis of Interaction Parameters • Experimental Validation. Diagnosis Setup • Discussion and Outlook
Resumo:
Outline: • Introduction • Process Experimental Setup • Experimental Procedure • Experimental Results for Al2024-T351 and Ti6Al4V - Residual stresses - Tensile Strength - Fatigue Life • Discussion and Outlook - Prospects for technological applications of LSP
Resumo:
An experimental study was performed in order to determine the influence of the sequence of operations on the effectiveness of Laser Shock Peening (LSP) treatment in increasing the fatigue performances of open-hole aluminium specimens. Residual stress measurements, fractographic analysis and FEM analysis were performed, indicating the presence of compressive residual stresses on the surface of the treated specimens and tensile residual stresses in the mid-section along the thickness of the specimens. Negative effects on fatigue lives were encountered on the specimens with the hole already present, while positive effect were observed in specimens in which the hole was drilled after LSP treatment. These results indicate that LSP can be a good solution for “in production” application, in which open holes are to be drilled after the LSP treatment. The application in which LSP is used “in service” on structures with pre-existing cut-outs, has proven to be impracticable in the investigated configuration.
Resumo:
Based on laser beam intensities above 109 W/cm2 with pulse energy of several Joules and duration of nanoseconds, Laser Shock Processing (LSP) is capable of inducing a surface compressive residual stress field. The paper presents experimental results showing the ability of LSP to improve the mechanical strength and cracking resistance of AA2024-T351 friction stir welded (FSW) joints. After introducing the FSW and LSP procedures, the results of microstructural analysis and micro-hardness are discussed. Video Image Correlation was used to measure the displacement and strain fields produced during tensile testing of flat specimens; the local and overall tensile behavior of native FSW joints vs. LSP treated were analyzed. Further, results of slow strain rate tensile testing of the FSW joints, native and LSP treated, performed in 3.5% NaCl solution are presented. The ability of LSP to improve the structural behavior of the FSW joints is underscored.
Resumo:
This paper presents some of the modelling criteria that have been used for the study of pyrotechnic shock propagation in the A5 VEB Structure, as well as the main conclusions from a mathematical model of the axymmetric effects in it. The separation of the lower stage of the ARIANE 5 Vehicle Equipment Bay (VEB)Structure is to be done using a pyrotechnic device. The wave propagation effects produced by the explosion have been analyzed with a computer program using as shape functions the analytical solution to the frequency response of a Timoshenko-Rayleigh beams and shells in that way the discretization can have elements as large as possible, depending on the material properties and boundary conditions. Moreover an enormous amount of possibilities in the treatment of concentrated masses, springs and dashpots, either with respect to a fixed reference or between nodes, is open for translational as well as rotational degrees of freedom.
Resumo:
Tests used to simulate the separation of the lower stage of the Ariane Vehicle Equipment Bay (VEB) were carried out on a flat full scale model. Theoretical studies carried out prior to testing are described. Three different mathematical methods, finite element, component element, and wave propagation, were used. Comparison of the predicted theoretical results with the actual test results is planned.
Resumo:
A recently obtained nonlocal expression for the electron heat flux valid for arbitrary ionization numbers Z is used to study the structure of a plane shock wave in a fully ionized plasma. Nonlocal effects are only important in the foot of the electronic preheating region, where the electron temperature gradient is the steepest. The results are quantified as a function of a characteristic Knudsen number of that region. This work also generalizes to arbitrary values of Z previous results on plasma shock wave structure.
Resumo:
This paper deals with the theoretical method and the modelling problems on the analysis of the Pyrotechnic Shock Propagation in the Vehicle Equipment Bay Structure of the ARIANE 5 during the separation of the upper stage. This work has been developed under a contract with the Spanish Firm Construcciones Aeronáuticas S.A. From all the analysis and the studies it can be concluded that: 1.- The mathematical method used for the study of the pyrotechnic shock phenomena is very well suited for conducting parametric studies. 2.- A careful model of the structure should be developed taking into account the realistic stiffness and dissipation properties at the junctions. 3.- The load produced by the pyrotechnic device should be carefully calibrated to reach a good agreement between theoretical and test results. 4.- In any case with the adquired experience it can be said that with the modelling of continuous elements the order of magnitude of the accelerations can be predicted with the accuracy needed in practical applications.
Resumo:
The theoretical improvements performed since the last spacecraft and mechanical testing conference on the study of the pyrotechnic shock phenomena produced during the separation of the lower stage of the Ariane 5 Vehicle Equipment Bay (VEB) structure are described. The first theoretical approach used was based on the wave propagation method, including axial and shear waves. The method was changed, in order to capture the bending effects, as well as the influence of the frequency dependent damping values. In addition to the development of the theoretical method, efforts were made to improve the criteria used to model the structure. Comparison of the theoretical predictions with the test results of a flat test sample 1 m width, as well as a preliminary test performed on a small sample, are presented.
Resumo:
Laser shock processing (LSP) is increasingly applied as an effective technology for the improvement of metallic materials mechanical properties in different types of components as a means of enhancement of their fatigue life behavior. As reported in previous contributions by the authors, a main effect resulting from the application of the LSP technique consists on the generation of relatively deep compression residual stresses fields into metallic components allowing an improved mechanical behaviour, explicitly the life improvement of the treated specimens against wear, crack growth and stress corrosion cracking. Additional results accomplished by the authors in the line of practical development of the LSP technique at an experimental level (aiming its integral assessment from an interrelated theoretical and experimental point of view) are presented in this paper. Concretely, experimental results on the residual stress profiles and associated mechanical properties modification successfully reached in typical materials under different LSP irradiation conditions are presented. In this case, the specific behavior of a widely used material in high reliability components (especially in nuclear and biomedical applications) as AISI 316L is analyzed, the effect of possible “in-service” thermal conditions on the relaxation of the LSP effects being specifically characterized. I.
Resumo:
Continuous and long-pulse lasers have been extensively used for the forming of metal sheets for macroscopic mechanical applications. However, for the manufacturing of Micro-Mechanical Systems (MMS), the applicability of such type of lasers is limited by the long relaxation time of the thermal fields responsible for the forming phenomena. As a consequence, the final sheet deformation state is attained only after a certain time, what makes the generated internal residual stress fields more dependent on ambient conditions and might difficult the subsequent assembly process. The use of short pulse (ns) lasers provides a suitable parameter matching for the laser forming of an important range of sheet components used in MEMS. The short interaction time scale required for the predominantly mechanic (shock) induction of deformation residual stresses allows the successful processing of components in a medium range of miniaturization (particularly important according to its frequent use in such systems). In the present paper, Laser Shock Micro-Forming (LSμF) is presented as an emerging technique for Microsystems parts shaping and adjustment along with a discussion on its physical foundations and practical implementation possibilities developed by the authors.
Resumo:
Laser shock processing (LSP) is being increasingly applied as an effective technology for the improvement of metallic materials mechanical and surface properties in different types of components as a means of enhancement of their corrosion and fatigue life behavior. As reported in previous contributions by the authors, a main effect resulting from the application of the LSP technique consists on the generation of relatively deep compression residual stresses field into metallic alloy pieces allowing an improved mechanical behaviour, explicitly the life improvement of the treated specimens against wear, crack growth and stress corrosion cracking. Additional results accomplished by the authors in the line of practical development of the LSP technique at an experimental level (aiming its integral assessment from an interrelated theoretical and experimental point of view) are presented in this paper. Concretely, follow-on experimental results on the residual stress profiles and associated surface properties modification successfully reached in typical materials (especially Al and Ti alloys characteristic of high reliability components in the aerospace, nuclear and biomedical sectors) under different LSP irradiation conditions are presented along with a practical correlated analysis on the protective character of the residual stress profiles obtained under different irradiation strategies. Additional remarks on the improved character of the LSP technique over the traditional “shot peening” technique in what concerns depth of induced compressive residual stresses fields are also made through the paper
Resumo:
We present direct-drive target design studies for the laser mégajoule using two distinct initial aspect ratios (A = 34 and A = 5). Laser pulse shapes are optimized by a random walk method and drive power variations are used to cover a wide variety of implosion velocities between 260 km/s and 365 km/s. For selected implosion velocities and for each initial aspect ratio, scaled-target families are built in order to find self-ignition threshold. High-gain shock ignition is also investigated in the context of Laser MégaJoule for marginally igniting targets below their own self-ignition threshold.
Resumo:
We consider the finite radially symmetric deformation of a circular cylindrical tube of a homogeneous transversely isotropic elastic material subject to axial stretch, radial deformation and torsion, supported by axial load, internal pressure and end moment. Two different directions of transverse isotropy are considered: the radial direction and an arbitrary direction in planes normal locally to the radial direction, the only directions for which the considered deformation is admissible in general. In the absence of body forces, formulas are obtained for the internal pressure, and the resultant axial load and torsional moment on the ends of the tube in respect of a general strain-energy function. For a specific material model of transversely isotropic elasticity, and material and geometrical parameters, numerical results are used to illustrate the dependence of the pressure, (reduced) axial load and moment on the radial stretch and a measure of the torsional deformation for a fixed value of the axial stretch.
Resumo:
The increasing demands in MEMS fabrication are leading to new requirements in production technology. Especially the packaging and assembly require high accuracy in positioning and high reproducibility in combination with low production costs. Conventional assembly technology and mechanical adjustment methods are time consuming and expensive. Each component of the system has to be positioned and fixed. Also adjustment of the parts after joining requires additional mechanical devices that need to be accessible after joining.