25 resultados para Semantic technologies
Resumo:
The use of semantic and Linked Data technologies for Enterprise Application Integration (EAI) is increasing in recent years. Linked Data and Semantic Web technologies such as the Resource Description Framework (RDF) data model provide several key advantages over the current de-facto Web Service and XML based integration approaches. The flexibility provided by representing the data in a more versatile RDF model using ontologies enables avoiding complex schema transformations and makes data more accessible using Web standards, preventing the formation of data silos. These three benefits represent an edge for Linked Data-based EAI. However, work still has to be performed so that these technologies can cope with the particularities of the EAI scenarios in different terms, such as data control, ownership, consistency, or accuracy. The first part of the paper provides an introduction to Enterprise Application Integration using Linked Data and the requirements imposed by EAI to Linked Data technologies focusing on one of the problems that arise in this scenario, the coreference problem, and presents a coreference service that supports the use of Linked Data in EAI systems. The proposed solution introduces the use of a context that aggregates a set of related identities and mappings from the identities to different resources that reside in distinct applications and provide different views or aspects of the same entity. A detailed architecture of the Coreference Service is presented explaining how it can be used to manage the contexts, identities, resources, and applications which they relate to. The paper shows how the proposed service can be utilized in an EAI scenario using an example involving a dashboard that integrates data from different systems and the proposed workflow for registering and resolving identities. As most enterprise applications are driven by business processes and involve legacy data, the proposed approach can be easily incorporated into enterprise applications.
Resumo:
Durante el transcurso de esta Tesis Doctoral se ha realizado un estudio de la problemática asociada al desarrollo de sistemas de interacción hombre-máquina sensibles al contexto. Este problema se enmarca dentro de dos áreas de investigación: los sistemas interactivos y las fuentes de información contextual. Tradicionalmente la integración entre ambos campos se desarrollaba a través de soluciones verticales específicas, que abstraen a los sistemas interactivos de conocer los procedimientos de bajo nivel de acceso a la información contextual, pero limitan su interoperabilidad con otras aplicaciones y fuentes de información. Para solventar esta limitación se hace imprescindible potenciar soluciones interoperables que permitan acceder a la información del mundo real a través de procedimientos homogéneos. Esta problemática coincide perfectamente con los escenarios de \Computación Ubicua" e \Internet de las Cosas", donde se apunta a un futuro en el que los objetos que nos rodean serán capaces de obtener información del entorno y comunicarla a otros objetos y personas. Los sistemas interactivos, al ser capaces de obtener información de su entorno a través de la interacción con el usuario, pueden tomar un papel especial en este escenario tanto como consumidores como productores de información. En esta Tesis se ha abordado la integración de ambos campos teniendo en cuenta este escenario tecnológico. Para ello, en primer lugar se ha realizado un an álisis de las iniciativas más importantes para la definición y diseño de sistemas interactivos, y de las principales infraestructuras de suministro de información. Mediante este estudio se ha propuesto utilizar el lenguaje SCXML del W3C para el diseño de los sistemas interactivos y el procesamiento de los datos proporcionados por fuentes de contexto. Así, se ha reflejado cómo las capacidades del lenguaje SCXML para combinar información de diferentes modalidades pueden también utilizarse para procesar e integrar información contextual de diferentes fuentes heterogéneas, y por consiguiente diseñar sistemas de interacción sensibles al contexto. Del mismo modo se presenta a la iniciativa Sensor Web, y a su extensión semántica Semantic Sensor Web, como una iniciativa idónea para permitir un acceso y suministro homogéneo de la información a los sistemas interactivos sensibles al contexto. Posteriormente se han analizado los retos que plantea la integración de ambos tipos de iniciativas. Como resultado se ha conseguido establecer una serie de funcionalidades que son necesarias implementar para llevar a cabo esta integración. Utilizando tecnologías que aportan una gran flexibilidad al proceso de implementación y que se apoyan en recomendaciones y estándares actuales, se implementaron una serie de desarrollos experimentales que integraban las funcionalidades identificadas anteriormente. Finalmente, con el fin de validar nuestra propuesta, se realizaron un conjunto de experimentos sobre un entorno de experimentación que simula el escenario de la conducción. En este escenario un sistema interactivo se comunica con una extensión semántica de una plataforma basada en los estándares de la Sensor Web para poder obtener información y publicar las observaciones que el usuario realizaba al sistema. Los resultados obtenidos han demostrado la viabilidad de utilizar el lenguaje SCXML para el diseño de sistemas interactivos sensibles al contexto que requieren acceder a plataformas avanzadas de información para consumir y publicar información a la vez que interaccionan con el usuario. Del mismo modo, se ha demostrado cómo la utilización de tecnologías semánticas en los procesos de consulta y publicación de información puede facilitar la reutilización de la información publicada en infraestructuras Sensor Web por cualquier tipo de aplicación, y de este modo contribuir al futuro escenario de Internet de las Cosas. ABSTRACT In this Thesis, we have addressed the difficulties related to the development of context-aware human-machine interaction systems. This issue is part of two research fields: interactive systems and contextual information sources. Traditionally both fields have been integrated through domain-specific vertical solutions that allow interactive systems to access contextual information without having to deal with low-level procedures, but restricting their interoperability with other applications and heterogeneous data sources. Thus, it is essential to boost the research on interoperable solutions that provide access to real world information through homogeneous procedures. This issue perfectly matches with the scenarios of \Ubiquitous Computing" and \Internet of Things", which point toward a future in which many objects around us will be able to acquire meaningful information about the environment and communicate it to other objects and to people. Since interactive systems are able to get information from their environment through interaction with the user, they can play an important role in this scenario as they can both consume real-world data and produce enriched information. This Thesis deals with the integration of both fields considering this technological scenario. In order to do this, we first carried out an analysis of the most important initiatives for the definition and design of interactive systems, and the main infrastructures for providing information. Through this study the use of the W3C SCXML language is proposed for both the design of interactive systems and the processing of data provided by different context sources. Thus, this work has shown how the SCXML capabilities for combining information from different modalities can also be used to process and integrate contextual information from different heterogeneous sensor sources, and therefore to develope context-aware interaction systems. Similarly, we present the Sensor Web initiative, and its semantic extension Semantic Sensor Web, as an appropriate initiative to allow uniform access and delivery of information to the context-aware interactive systems. Subsequently we have analyzed the challenges of integrating both types of initiatives: SCXML and (Semantic) Sensor Web. As a result, we state a number of functionalities that are necessary to implement in order to perform this integration. By using technologies that provide exibility to the implementation process and are based on current recommendations and standards, we implemented a series of experimental developments that integrate the identified functionalities. Finally, in order to validate our approach, we conducted different experiments with a testing environment simulating a driving scenario. In this framework an interactive system can access a semantic extension of a Telco plataform, based on the standards of the Sensor Web, to acquire contextual information and publish observations that the user performed to the system. The results showed the feasibility of using the SCXML language for designing context-aware interactive systems that require access to advanced sensor platforms for consuming and publishing information while interacting with the user. In the same way, it was shown how the use of semantic technologies in the processes of querying and publication sensor data can assist in reusing and sharing the information published by any application in Sensor Web infrastructures, and thus contribute to realize the future scenario of \Internet of Things".
Resumo:
There are several different standardised and widespread formats to represent emotions. However, there is no standard semantic model yet. This paper presents a new ontology, called Onyx, that aims to become such a standard while adding concepts from the latest Semantic Web models. In particular, the ontology focuses on the representation of Emotion Analysis results. But the model is abstract and inherits from previous standards and formats. It can thus be used as a reference representation of emotions in any future application or ontology. To prove this, we have translated resources from EmotionML representation to Onyx. We also present several ways in which developers could benefit from using this ontology instead of an ad-hoc presentation. Our ultimate goal is to foster the use of semantic technologies for emotion Analysis while following the Linked Data ideals.
Resumo:
La evaluación de ontologías, incluyendo diagnóstico y reparación de las mismas, es una compleja actividad que debe llevarse a cabo en cualquier proyecto de desarrollo ontológico para comprobar la calidad técnica de las ontologías. Sin embargo, existe una gran brecha entre los enfoques metodológicos sobre la evaluación de ontologías y las herramientas que le dan soporte. En particular, no existen enfoques que proporcionen guías concretas sobre cómo diagnosticar y, en consecuencia, reparar ontologías. Esta tesis pretende avanzar en el área de la evaluación de ontologías, concretamente en la actividad de diagnóstico. Los principales objetivos de esta tesis son (a) ayudar a los desarrolladores en el diagnóstico de ontologías para encontrar errores comunes y (b) facilitar dicho diagnóstico reduciendo el esfuerzo empleado proporcionando el soporte tecnológico adecuado. Esta tesis presenta las siguientes contribuciones: • Catálogo de 41 errores comunes que los ingenieros ontológicos pueden cometer durante el desarrollo de ontologías. • Modelo de calidad para el diagnóstico de ontologías alineando el catálogo de errores comunes con modelos de calidad existentes. • Diseño e implementación de 48 métodos para detectar 33 de los 41 errores comunes en el catálogo. • Soporte tecnológico OOPS!, que permite el diagnstico de ontologías de forma (semi)automática. De acuerdo con los comentarios recibidos y los resultados de los test de satisfacción realizados, se puede afirmar que el enfoque desarrollado y presentado en esta tesis ayuda de forma efectiva a los usuarios a mejorar la calidad de sus ontologías. OOPS! ha sido ampliamente aceptado por un gran número de usuarios de formal global y ha sido utilizado alrededor de 3000 veces desde 60 países diferentes. OOPS! se ha integrado en software desarrollado por terceros y ha sido instalado en empresas para ser utilizado tanto durante el desarrollo de ontologías como en actividades de formación. Abstract Ontology evaluation, which includes ontology diagnosis and repair, is a complex activity that should be carried out in every ontology development project, because it checks for the technical quality of the ontology. However, there is an important gap between the methodological work about ontology evaluation and the tools that support such an activity. More precisely, not many approaches provide clear guidance about how to diagnose ontologies and how to repair them accordingly. This thesis aims to advance the current state of the art of ontology evaluation, specifically in the ontology diagnosis activity. The main goals of this thesis are (a) to help ontology engineers to diagnose their ontologies in order to find common pitfalls and (b) to lessen the effort required from them by providing the suitable technological support. This thesis presents the following main contributions: • A catalogue that describes 41 pitfalls that ontology developers might include in their ontologies. • A quality model for ontology diagnose that aligns the pitfall catalogue to existing quality models for semantic technologies. • The design and implementation of 48 methods for detecting 33 out of the 41 pitfalls defined in the catalogue. • A system called OOPS! (OntOlogy Pitfall Scanner!) that allows ontology engineers to (semi)automatically diagnose their ontologies. According to the feedback gathered and satisfaction tests carried out, the approach developed and presented in this thesis effectively helps users to increase the quality of their ontologies. At the time of writing this thesis, OOPS! has been broadly accepted by a high number of users worldwide and has been used around 3000 times from 60 different countries. OOPS! is integrated with third-party software and is locally installed in private enterprises being used both for ontology development activities and training courses.
Resumo:
Sensor networks are increasingly being deployed in the environment for many different purposes. The observations that they produce are made available with heterogeneous schemas, vocabularies and data formats, making it difficult to share and reuse this data, for other purposes than those for which they were originally set up. The authors propose an ontology-based approach for providing data access and query capabilities to streaming data sources, allowing users to express their needs at a conceptual level, independent of implementation and language-specific details. In this article, the authors describe the theoretical foundations and technologies that enable exposing semantically enriched sensor metadata, and querying sensor observations through SPARQL extensions, using query rewriting and data translation techniques according to mapping languages, and managing both pull and push delivery modes.
Resumo:
Current “Internet of Things” concepts point to a future where connected objects gather meaningful information about their environment and share it with other objects and people. In particular, objects embedding Human Machine Interaction (HMI), such as mobile devices and, increasingly, connected vehicles, home appliances, urban interactive infrastructures, etc., may not only be conceived as sources of sensor information, but, through interaction with their users, they can also produce highly valuable context-aware human-generated observations. We believe that the great promise offered by combining and sharing all of the different sources of information available can be realized through the integration of HMI and Semantic Sensor Web technologies. This paper presents a technological framework that harmonizes two of the most influential HMI and Sensor Web initiatives: the W3C’s Multimodal Architecture and Interfaces (MMI) and the Open Geospatial Consortium (OGC) Sensor Web Enablement (SWE) with its semantic extension, respectively. Although the proposed framework is general enough to be applied in a variety of connected objects integrating HMI, a particular development is presented for a connected car scenario where drivers’ observations about the traffic or their environment are shared across the Semantic Sensor Web. For implementation and evaluation purposes an on-board OSGi (Open Services Gateway Initiative) architecture was built, integrating several available HMI, Sensor Web and Semantic Web technologies. A technical performance test and a conceptual validation of the scenario with potential users are reported, with results suggesting the approach is sound
Resumo:
This paper describes a novel architecture to introduce automatic annotation and processing of semantic sensor data within context-aware applications. Based on the well-known state-charts technologies, and represented using W3C SCXML language combined with Semantic Web technologies, our architecture is able to provide enriched higher-level semantic representations of user’s context. This capability to detect and model relevant user situations allows a seamless modeling of the actual interaction situation, which can be integrated during the design of multimodal user interfaces (also based on SCXML) for them to be adequately adapted. Therefore, the final result of this contribution can be described as a flexible context-aware SCXML-based architecture, suitable for both designing a wide range of multimodal context-aware user interfaces, and implementing the automatic enrichment of sensor data, making it available to the entire Semantic Sensor Web
Resumo:
OntoTag - A Linguistic and Ontological Annotation Model Suitable for the Semantic Web
1. INTRODUCTION. LINGUISTIC TOOLS AND ANNOTATIONS: THEIR LIGHTS AND SHADOWS
Computational Linguistics is already a consolidated research area. It builds upon the results of other two major ones, namely Linguistics and Computer Science and Engineering, and it aims at developing computational models of human language (or natural language, as it is termed in this area). Possibly, its most well-known applications are the different tools developed so far for processing human language, such as machine translation systems and speech recognizers or dictation programs.
These tools for processing human language are commonly referred to as linguistic tools. Apart from the examples mentioned above, there are also other types of linguistic tools that perhaps are not so well-known, but on which most of the other applications of Computational Linguistics are built. These other types of linguistic tools comprise POS taggers, natural language parsers and semantic taggers, amongst others. All of them can be termed linguistic annotation tools.
Linguistic annotation tools are important assets. In fact, POS and semantic taggers (and, to a lesser extent, also natural language parsers) have become critical resources for the computer applications that process natural language. Hence, any computer application that has to analyse a text automatically and ‘intelligently’ will include at least a module for POS tagging. The more an application needs to ‘understand’ the meaning of the text it processes, the more linguistic tools and/or modules it will incorporate and integrate.
However, linguistic annotation tools have still some limitations, which can be summarised as follows:
1. Normally, they perform annotations only at a certain linguistic level (that is, Morphology, Syntax, Semantics, etc.).
2. They usually introduce a certain rate of errors and ambiguities when tagging. This error rate ranges from 10 percent up to 50 percent of the units annotated for unrestricted, general texts.
3. Their annotations are most frequently formulated in terms of an annotation schema designed and implemented ad hoc.
A priori, it seems that the interoperation and the integration of several linguistic tools into an appropriate software architecture could most likely solve the limitations stated in (1). Besides, integrating several linguistic annotation tools and making them interoperate could also minimise the limitation stated in (2). Nevertheless, in the latter case, all these tools should produce annotations for a common level, which would have to be combined in order to correct their corresponding errors and inaccuracies. Yet, the limitation stated in (3) prevents both types of integration and interoperation from being easily achieved.
In addition, most high-level annotation tools rely on other lower-level annotation tools and their outputs to generate their own ones. For example, sense-tagging tools (operating at the semantic level) often use POS taggers (operating at a lower level, i.e., the morphosyntactic) to identify the grammatical category of the word or lexical unit they are annotating. Accordingly, if a faulty or inaccurate low-level annotation tool is to be used by other higher-level one in its process, the errors and inaccuracies of the former should be minimised in advance. Otherwise, these errors and inaccuracies would be transferred to (and even magnified in) the annotations of the high-level annotation tool.
Therefore, it would be quite useful to find a way to
(i) correct or, at least, reduce the errors and the inaccuracies of lower-level linguistic tools;
(ii) unify the annotation schemas of different linguistic annotation tools or, more generally speaking, make these tools (as well as their annotations) interoperate.
Clearly, solving (i) and (ii) should ease the automatic annotation of web pages by means of linguistic tools, and their transformation into Semantic Web pages (Berners-Lee, Hendler and Lassila, 2001). Yet, as stated above, (ii) is a type of interoperability problem. There again, ontologies (Gruber, 1993; Borst, 1997) have been successfully applied thus far to solve several interoperability problems. Hence, ontologies should help solve also the problems and limitations of linguistic annotation tools aforementioned.
Thus, to summarise, the main aim of the present work was to combine somehow these separated approaches, mechanisms and tools for annotation from Linguistics and Ontological Engineering (and the Semantic Web) in a sort of hybrid (linguistic and ontological) annotation model, suitable for both areas. This hybrid (semantic) annotation model should (a) benefit from the advances, models, techniques, mechanisms and tools of these two areas; (b) minimise (and even solve, when possible) some of the problems found in each of them; and (c) be suitable for the Semantic Web. The concrete goals that helped attain this aim are presented in the following section.
2. GOALS OF THE PRESENT WORK
As mentioned above, the main goal of this work was to specify a hybrid (that is, linguistically-motivated and ontology-based) model of annotation suitable for the Semantic Web (i.e. it had to produce a semantic annotation of web page contents). This entailed that the tags included in the annotations of the model had to (1) represent linguistic concepts (or linguistic categories, as they are termed in ISO/DCR (2008)), in order for this model to be linguistically-motivated; (2) be ontological terms (i.e., use an ontological vocabulary), in order for the model to be ontology-based; and (3) be structured (linked) as a collection of ontology-based
Resumo:
This PhD thesis contributes to the problem of resource and service discovery in the context of the composable web. In the current web, mashup technologies allow developers reusing services and contents to build new web applications. However, developers face a problem of information flood when searching for appropriate services or resources for their combination. To contribute to overcoming this problem, a framework is defined for the discovery of services and resources. In this framework, three levels are defined for performing discovery at content, discovery and agente levels. The content level involves the information available in web resources. The web follows the Representational Stateless Transfer (REST) architectural style, in which resources are returned as representations from servers to clients. These representations usually employ the HyperText Markup Language (HTML), which, along with Content Style Sheets (CSS), describes the markup employed to render representations in a web browser. Although the use of SemanticWeb standards such as Resource Description Framework (RDF) make this architecture suitable for automatic processes to use the information present in web resources, these standards are too often not employed, so automation must rely on processing HTML. This process, often referred as Screen Scraping in the literature, is the content discovery according to the proposed framework. At this level, discovery rules indicate how the different pieces of data in resources’ representations are mapped onto semantic entities. By processing discovery rules on web resources, semantically described contents can be obtained out of them. The service level involves the operations that can be performed on the web. The current web allows users to perform different tasks such as search, blogging, e-commerce, or social networking. To describe the possible services in RESTful architectures, a high-level feature-oriented service methodology is proposed at this level. This lightweight description framework allows defining service discovery rules to identify operations in interactions with REST resources. The discovery is thus performed by applying discovery rules to contents discovered in REST interactions, in a novel process called service probing. Also, service discovery can be performed by modelling services as contents, i.e., by retrieving Application Programming Interface (API) documentation and API listings in service registries such as ProgrammableWeb. For this, a unified model for composable components in Mashup-Driven Development (MDD) has been defined after the analysis of service repositories from the web. The agent level involves the orchestration of the discovery of services and contents. At this level, agent rules allow to specify behaviours for crawling and executing services, which results in the fulfilment of a high-level goal. Agent rules are plans that allow introspecting the discovered data and services from the web and the knowledge present in service and content discovery rules to anticipate the contents and services to be found on specific resources from the web. By the definition of plans, an agent can be configured to target specific resources. The discovery framework has been evaluated on different scenarios, each one covering different levels of the framework. Contenidos a la Carta project deals with the mashing-up of news from electronic newspapers, and the framework was used for the discovery and extraction of pieces of news from the web. Similarly, in Resulta and VulneraNET projects the discovery of ideas and security knowledge in the web is covered, respectively. The service level is covered in the OMELETTE project, where mashup components such as services and widgets are discovered from component repositories from the web. The agent level is applied to the crawling of services and news in these scenarios, highlighting how the semantic description of rules and extracted data can provide complex behaviours and orchestrations of tasks in the web. The main contributions of the thesis are the unified framework for discovery, which allows configuring agents to perform automated tasks. Also, a scraping ontology has been defined for the construction of mappings for scraping web resources. A novel first-order logic rule induction algorithm is defined for the automated construction and maintenance of these mappings out of the visual information in web resources. Additionally, a common unified model for the discovery of services is defined, which allows sharing service descriptions. Future work comprises the further extension of service probing, resource ranking, the extension of the Scraping Ontology, extensions of the agent model, and contructing a base of discovery rules. Resumen La presente tesis doctoral contribuye al problema de descubrimiento de servicios y recursos en el contexto de la web combinable. En la web actual, las tecnologías de combinación de aplicaciones permiten a los desarrolladores reutilizar servicios y contenidos para construir nuevas aplicaciones web. Pese a todo, los desarrolladores afrontan un problema de saturación de información a la hora de buscar servicios o recursos apropiados para su combinación. Para contribuir a la solución de este problema, se propone un marco de trabajo para el descubrimiento de servicios y recursos. En este marco, se definen tres capas sobre las que se realiza descubrimiento a nivel de contenido, servicio y agente. El nivel de contenido involucra a la información disponible en recursos web. La web sigue el estilo arquitectónico Representational Stateless Transfer (REST), en el que los recursos son devueltos como representaciones por parte de los servidores a los clientes. Estas representaciones normalmente emplean el lenguaje de marcado HyperText Markup Language (HTML), que, unido al estándar Content Style Sheets (CSS), describe el marcado empleado para mostrar representaciones en un navegador web. Aunque el uso de estándares de la web semántica como Resource Description Framework (RDF) hace apta esta arquitectura para su uso por procesos automatizados, estos estándares no son empleados en muchas ocasiones, por lo que cualquier automatización debe basarse en el procesado del marcado HTML. Este proceso, normalmente conocido como Screen Scraping en la literatura, es el descubrimiento de contenidos en el marco de trabajo propuesto. En este nivel, un conjunto de reglas de descubrimiento indican cómo los diferentes datos en las representaciones de recursos se corresponden con entidades semánticas. Al procesar estas reglas sobre recursos web, pueden obtenerse contenidos descritos semánticamente. El nivel de servicio involucra las operaciones que pueden ser llevadas a cabo en la web. Actualmente, los usuarios de la web pueden realizar diversas tareas como búsqueda, blogging, comercio electrónico o redes sociales. Para describir los posibles servicios en arquitecturas REST, se propone en este nivel una metodología de alto nivel para descubrimiento de servicios orientada a funcionalidades. Este marco de descubrimiento ligero permite definir reglas de descubrimiento de servicios para identificar operaciones en interacciones con recursos REST. Este descubrimiento es por tanto llevado a cabo al aplicar las reglas de descubrimiento sobre contenidos descubiertos en interacciones REST, en un nuevo procedimiento llamado sondeo de servicios. Además, el descubrimiento de servicios puede ser llevado a cabo mediante el modelado de servicios como contenidos. Es decir, mediante la recuperación de documentación de Application Programming Interfaces (APIs) y listas de APIs en registros de servicios como ProgrammableWeb. Para ello, se ha definido un modelo unificado de componentes combinables para Mashup-Driven Development (MDD) tras el análisis de repositorios de servicios de la web. El nivel de agente involucra la orquestación del descubrimiento de servicios y contenidos. En este nivel, las reglas de nivel de agente permiten especificar comportamientos para el rastreo y ejecución de servicios, lo que permite la consecución de metas de mayor nivel. Las reglas de los agentes son planes que permiten la introspección sobre los datos y servicios descubiertos, así como sobre el conocimiento presente en las reglas de descubrimiento de servicios y contenidos para anticipar contenidos y servicios por encontrar en recursos específicos de la web. Mediante la definición de planes, un agente puede ser configurado para descubrir recursos específicos. El marco de descubrimiento ha sido evaluado sobre diferentes escenarios, cada uno cubriendo distintos niveles del marco. El proyecto Contenidos a la Carta trata de la combinación de noticias de periódicos digitales, y en él el framework se ha empleado para el descubrimiento y extracción de noticias de la web. De manera análoga, en los proyectos Resulta y VulneraNET se ha llevado a cabo un descubrimiento de ideas y de conocimientos de seguridad, respectivamente. El nivel de servicio se cubre en el proyecto OMELETTE, en el que componentes combinables como servicios y widgets se descubren en repositorios de componentes de la web. El nivel de agente se aplica al rastreo de servicios y noticias en estos escenarios, mostrando cómo la descripción semántica de reglas y datos extraídos permiten proporcionar comportamientos complejos y orquestaciones de tareas en la web. Las principales contribuciones de la tesis son el marco de trabajo unificado para descubrimiento, que permite configurar agentes para realizar tareas automatizadas. Además, una ontología de extracción ha sido definida para la construcción de correspondencias y extraer información de recursos web. Asimismo, un algoritmo para la inducción de reglas de lógica de primer orden se ha definido para la construcción y el mantenimiento de estas correspondencias a partir de la información visual de recursos web. Adicionalmente, se ha definido un modelo común y unificado para el descubrimiento de servicios que permite la compartición de descripciones de servicios. Como trabajos futuros se considera la extensión del sondeo de servicios, clasificación de recursos, extensión de la ontología de extracción y la construcción de una base de reglas de descubrimiento.
Resumo:
There is an increasing tendency of turning the current power grid, essentially unaware of variations in electricity demand and scattered energy sources, into something capable of bringing a degree of intelligence by using tools strongly related to information and communication technologies, thus turning into the so-called Smart Grid. In fact, it could be considered that the Smart Grid is an extensive smart system that spreads throughout any area where power is required, providing a significant optimization in energy generation, storage and consumption. However, the information that must be treated to accomplish these tasks is challenging both in terms of complexity (semantic features, distributed systems, suitable hardware) and quantity (consumption data, generation data, forecasting functionalities, service reporting), since the different energy beneficiaries are prone to be heterogeneous, as the nature of their own activities is. This paper presents a proposal on how to deal with these issues by using a semantic middleware architecture that integrates different components focused on specific tasks, and how it is used to handle information at every level and satisfy end user requests.