30 resultados para Seismic wave propagation
Resumo:
The theoretical improvements performed since the last spacecraft and mechanical testing conference on the study of the pyrotechnic shock phenomena produced during the separation of the lower stage of the Ariane 5 Vehicle Equipment Bay (VEB) structure are described. The first theoretical approach used was based on the wave propagation method, including axial and shear waves. The method was changed, in order to capture the bending effects, as well as the influence of the frequency dependent damping values. In addition to the development of the theoretical method, efforts were made to improve the criteria used to model the structure. Comparison of the theoretical predictions with the test results of a flat test sample 1 m width, as well as a preliminary test performed on a small sample, are presented.
Resumo:
In this paper some aspects of the use of non-reflecting boundaries in dynamic problems, analyzed in time domain, are considered. Current trends for treating the above mentioned problems are summarized with a particular emphasis on the use of numerical techniques, such as Boundary Element Method (BEM) or mixed and hybrid formulations, Finite Element Method (FEM) plus BEM. As an alternative to these methods, an easy time domain boundary condition, obtained from the well known consistent transmitting boundary developed by Waas for frequency domain analysis, can be applied to represent the reactions of the unbounded soil on the interest zone. The behaviour of this proposed boundary condition is studied when waves of different frequency to the one used for its obtention are acting on the physical edge of the model. As an application example,an analysis is made of the soil-structure interaction of a rigid strip foundation on a horizontal non-linear elastic layer on bed rock. The results obtained suggest the need of time domain solutions for this type of problem
Resumo:
El objetivo principal del proyecto es el desarrollo de un simulador de comunicaciones submarinas, que permite la caracterización del canal a través de datos reales que son usados para establecer la comunicación entre dos puntos, empleando diferentes técnicas de modulación. Dicho simulador, ofrece un interfaz gráfico sencillo de usar y ha sido desarrollado en MatLab, basado en Bellhop [14] y Simulink. Dicho simulador desarrollado se ha usado para realizar simulaciones en diferentes escenarios, con datos reales del océano extraídos de la base de datos WOD [2]. Se ha divido el proyecto en seis partes: INTRODUCCIÓN, MARCO TEÓRICO, IMPLEMENTACIÓN, CONCLUSIONES, MANUAL y PROPUESTA DE PRÁCTICA. Se describen a continuación: En la primera parte, se realiza una introducción al proyecto, indicando las motivaciones que llevaron a desarrollarlo, una breve introducción, los objetivos fijados y un análisis de la evolución histórica de las comunicaciones submarinas, hasta llegar al estado del arte existente. En la segunda parte se describen los fundamentos teóricos necesarios para el desarrollo del proyecto, por una parte lo relativo a las ondas acústicas y su propagación, y por otra lo relativo a las técnicas de modulación digital empleadas. En la tercera parte se describe la implementación del simulador, explicando las funcionalidades existentes y un resumen de cómo fue desarrollado y su arquitectura lo que facilita su uso para proyectos futuros. La cuarta parte analiza las simulaciones realizadas en diversos escenarios, empleando datos reales y datos artificiales para la temperatura y salinidad del agua. En la quinta parte se proporciona un manual de usuario del simulador desarrollado, para que pueda ser usado correctamente. Se describe también el procesado de extracción de datos de WOD para que sean compatibles. Por último, en propuesta didáctica se propone un guión de práctica para desarrollar en la asignatura P.A.S. ABSTRACT. The main goal of this project is the development of an underwater communication simulator, that allows the determination of the underwater channel through real data, using different modulation techniques. The simulator, offers a graphic interface, easy to use and developed in MatLab, based on Bellhop [14] and Simulink. The simulator was given the name of UWACOMSIM and it was used to simulate different scenarios, using data from the WOD [2]. The project is divided into six parts: INTRODUCTION, THEORETICAL FRAMEWORK, IMPLEMENTATION, CONCLUSIONS, MANUAL and DIDACTAL PROPOSAL. These parts are described bellow: In the first part an introduction is given, remarking the motivations that lead to develop the project. Also objectives are explained, a historical analysis of the underwater communications is given, and finish with the state of the art. Secondly, theoretical part is described. First, everything related with acoustics and wave propagation throgh water, secondly, digital modulation techniques are explained. In the third part, the simulation implementation is explained. Main functionalities are highlighted and a brief overview of the architecture is given. This part can be useful for related works. Simulations and conclusions about the results, are done in the fourth part. In this section, different significant scenarios are chosen, and many simulations are launched in order to analyse the data. In the fifth parth, a user manual is provided in order to show the user how to use the simulator and how to download data from WOD if needed. In the final part of the project, a laboratory session is proposed for the subject P.A.S.
Resumo:
In this study, forward seismic modelling of four geological models with Hydrocarbon (HC) traps were performed by ray tracing method to produce synthetic seismogram of each model. The idea is to identify the Hydrocarbon Indicators (HCI‟s) such as bright spot, flat spot, dim spot and Bottom Simulating Reflector (BSR) in the synthethic seismogram. The modelling was performed in DISCO/FOCUS 5.0 seismic data processing programme. Strong positive and negative reflection amplitudes and some artifact reflection horizons were observed on produced seismograms due to rapid changes in subsurface velocity and geometry respectively Additionally, Amplitude-versus-angle (AVA) curves of each HCIs was calculated by the Crewes Zoeppritz Explorer programme. AVA curves show that how the reflection coefficients change with the density and the P and S wave velocities of each layer such as oil, gas, gas hydrate or water saturated sediments. Due to AVA curves, an increase in reflection amplitude with incident angle of seismic waves corresponds to an indicator of a hydrocarbon reservoir
Resumo:
A method to analyze parabolic reflectors with arbitrary piecewise rim is presented in this communication. This kind of reflectors, when operating as collimators in compact range facilities, needs to be large in terms of wavelength. Their analysis is very inefficient, when it is carried out with fullwave/MoM techniques, and it is not very appropriate for designing with PO techniques. Also, fast GO formulations do not offer enough accuracy to reach performance results. The proposed algorithm is based on a GO-PWS hybrid scheme, using analytical as well as non-analytical formulations. On one side, an analytical treatment of the polygonal rim reflectors is carried out. On the other side, non-analytical calculi are based on efficient operations, such as M2 order 2-dimensional FFT. A combination of these two techniques in the algorithm ensures real ad-hoc design capabilities, reached through analysis speedup. The purpose of the algorithm is to obtain an optimal conformal serrated-edge reflector design through the analysis of the field quality within the quiet zone that it is able to generate in its forward half space.
Resumo:
The boundary element method is specially well suited for the analysis of the seismic response of valleys of complicated topography and stratigraphy. In this paper the method’s capabilities are illustrated using as an example an irregularity stratified (test site) sedimentary basin that has been modelled using 2D discretization and the Direct Boundary Element Method (DBEM). Site models displaying different levels of complexity are used in practice. The multi-layered model’s seismic response shows generally good agreement with observed data amplification levels, fundamental frequencies and the high spatial variability. Still important features such as the location of high frequencies peaks are missing. Even 2D simplified models reveal important characteristics of the wave field that 1D modelling does not show up.
Resumo:
We investigate the excitation and propagation of acoustic waves in polycrystalline aluminum nitride films along the directions parallel and normal to the c-axis. Longitudinal and transverse propagations are assessed through the frequency response of surface acoustic wave and bulk acoustic wave devices fabricated on films of different crystal qualities. The crystalline properties significantly affect the electromechanical coupling factors and acoustic properties of the piezoelectric layers. The presence of misoriented grains produces an overall decrease of the piezoelectric activity, degrading more severely the excitation and propagation of waves traveling transversally to the c-axis. It is suggested that the presence of such crystalline defects in c-axis-oriented films reduces the mechanical coherence between grains and hinders the transverse deformation of the film when the electric field is applied parallel to the surface.
Resumo:
This paper presents a new hazard-consistent ground motion characterization of the Itoiz dam site, located in Northern Spain. Firstly, we propose a methodology with different approximation levels to the expected ground motion at the dam site. Secondly, we apply this methodology taking into account the particular characteristics of the site and of the dam. Hazard calculations were performed following the Probabilistic Seismic Hazard Assessment method using a logic tree, which accounts for different seismic source zonings and different ground-motion attenuation relationships. The study was done in terms of peak ground acceleration and several spectral accelerations of periods coinciding with the fundamental vibration periods of the dam. In order to estimate these ground motions we consider two different dam conditions: when the dam is empty (T = 0.1 s) and when it is filled with water to its maximum capacity (T = 0.22 s). Additionally, seismic hazard analysis is done for two return periods: 975 years, related to the project earthquake, and 4,975 years, identified with an extreme event. Soil conditions were also taken into account at the site of the dam. Through the proposed methodology we deal with different forms of characterizing ground motion at the study site. In a first step, we obtain the uniform hazard response spectra for the two return periods. In a second step, a disaggregation analysis is done in order to obtain the controlling earthquakes that can affect the dam. Subsequently, we characterize the ground motion at the dam site in terms of specific response spectra for target motions defined by the expected values SA (T) of T = 0.1 and 0.22 s for the return periods of 975 and 4,975 years, respectively. Finally, synthetic acceleration time histories for earthquake events matching the controlling parameters are generated using the discrete wave-number method and subsequently analyzed. Because of the short relative distances between the controlling earthquakes and the dam site we considered finite sources in these computations. We conclude that directivity effects should be taken into account as an important variable in this kind of studies for ground motion characteristics.
Resumo:
A uniform geometrical theory of diffraction (UTD) solution is developed for the canonical problem of the electromagnetic (EM) scattering by an electrically large circular cylinder with a uniform impedance boundary condition (IBC), when it is illuminated by an obliquely incident high frequency plane wave. A solution to this canonical problem is first constructed in terms of an exact formulation involving a radially propagating eigenfunction expansion. The latter is converted into a circumferentially propagating eigenfunction expansion suited for large cylinders, via the Watson transform, which is expressed as an integral that is subsequently evaluated asymptotically, for high frequencies, in a uniform manner. The resulting solution is then expressed in the desired UTD ray form. This solution is uniform in the sense that it has the important property that it remains continuous across the transition region on either side of the surface shadow boundary. Outside the shadow boundary transition region it recovers the purely ray optical incident and reflected ray fields on the deep lit side of the shadow boundary and to the modal surface diffracted ray fields on the deep shadow side. The scattered field is seen to have a cross-polarized component due to the coupling between the TEz and TMz waves (where z is the cylinder axis) resulting from the IBC. Such cross-polarization vanishes for normal incidence on the cylinder, and also in the deep lit region for oblique incidence where it properly reduces to the geometrical optics (GO) or ray optical solution. This UTD solution is shown to be very accurate by a numerical comparison with an exact reference solution.
Resumo:
The derivative nonlinear Schrodinger DNLS equation, describing propagation of circularly polarized Alfven waves of finite amplitude in a cold plasma, is truncated to explore the coherent, weakly nonlinear, cubic coupling of three waves near resonance, one wave being linearly unstable and the other waves damped. In a reduced three-wave model equal dampings of daughter waves, three-dimensional flow for two wave amplitudes and one relative phase, no matter how small the growth rate of the unstable wave there exists a parametric domain with the flow exhibiting chaotic relaxation oscillations that are absent for zero growth rate. This hard transition in phase-space behavior occurs for left-hand LH polarized waves, paralleling the known fact that only LH time-harmonic solutions of the DNLS equation are modulationally unstable, with damping less than about unstable wave frequency 2/4 x ion cyclotron frequency. The structural stability of the transition was explored by going into a fully 3-wave model different dampings of daughter waves,four-dimensional flow; both models differ in significant phase-space features but keep common features essential for the transition.
Resumo:
The derivative nonlinear Schrödinger (DNLS) equation, describing propagation of circularly polarized Alfven waves of finite amplitude in a cold plasma, is truncated to explore the coherent, weakly nonlinear, cubic coupling of three waves near resonance, one wave being linearly unstable and the other waves damped. In a reduced three-wave model (equal damping of daughter waves, three-dimensional flow for two wave amplitudes and one relative phase), no matter how small the growth rate of the unstable wave there exists a parametric domain with the flow exhibiting chaotic dynamics that is absent for zero growth-rate. This hard transition in phase-space behavior occurs for left-hand (LH) polarized waves, paralelling the known fact that only LH time-harmonic solutions of the DNLS equation are modulationally unstable.
Resumo:
The derivative nonlinear Schrödinger (DNLS) equation, describing propagation of circularly polarized Alfven waves of finite amplitude in a cold plasma, is truncated to explore the coherent, weakly nonlinear coupling of three waves near resonance, one wave being linearly unstable and the other waves damped. No matter how small the growth rate of the unstable wave, the four-dimensional flow for the three wave amplitudes and a relative phase, with both resistive damping and linear Landau damping, exhibits chaotic relaxation oscillations that are absent for zero growth-rate. This hard transition in phase-space behavior occurs for left-hand (LH) polarized waves, paralleling the known fact that only LH time-harmonic solutions of the DNLS equation are modulationally unstable. The parameter domain developing chaos is much broader than the corresponding domain in a reduced 3-wave model that assumes equal dampings of the daughter waves
Resumo:
This paper describes the new anechoic chamber available at The University of Kent, UK. This facility includes a spherical near/far field, planar near field, cylindrical near field and a compact range. The facility allows measurement from 600 MHz up to 110 MHz. The spherical, planar and cylindrical ranges covers up to 40 GHz and the compact range is available from 50 GHz up to 110 MHz. Immediate plans are to use the new facility to measure body-centric antennas and sensing nodes together with near field sampling of finite sized Frequency Selective Surfaces.
Resumo:
We discuss two different approaches to overcome the power limitations of CW THz generation imposed to conventional photomixers. The increase in power achievable by using arrays of AEs is studied. Then ?large area emitters? are proposed as an alternate approach to overcome the power limitations. In this antenna-free new scheme of photomixing, the THz radiation originates directly from the acceleration of photo-induced charge carriers generated within a large semiconductor area. The quasi-continuous distribution of emitting elements corresponds to a high-density array and results in particularly favorable radiation profiles.
Resumo:
En el Campus Sur de la Universidad Politécnica de Madrid se ha llevado a cabo un proyecto para obtener una caracterización del subsuelo mediante ensayos ReMi, en colaboración con el departamento de Geofísica del Instituto Geográfico Nacional. La técnica ReMi (Refraction Microtremor) permite, mediante ensayos geofísicos realizados localmente sobre el terreno,obtener los parámetros físicos del mismo, que resultan de especial interés en el ámbito de la ingeniería civil. Esta técnica se caracteriza por englobarse dentro de la sísmica pasiva, muy empleada en prospección geofísica y basada en la obtención del modelo subyacente de distribución de velocidades de propagación de la onda S en función de la profundidad, con la ventaja de aprovechar el ruido sísmico ambiental como fuente de energía. Fue desarrollada en el Laboratorio Sismológico de Nevada (EEUU) por Louie (2001), con el objetivo de presentar una técnica innovadora en la obtención de las velocidades de propagación de manera experimental. Presenta ciertas ventajas, como la observación directa de la dispersión de ondas superficiales,que da un buen resultado de la velocidad de onda S, siendo un método no invasivo, de bajo coste y buena resolución, aplicable en entornos urbanos o sensibles en los que tanto otras técnicas sismológicas como otras variedades de prospección presentan dificultades. La velocidad de propagación de la onda S en los 30 primeros metros VS30, es ampliamente reconocida como un parámetro equivalente válido para caracterizar geotécnicamente el subsuelo y se halla matemáticamente relacionada con la velocidad de propagación de las ondas superficiales a observar mediante la técnica ReMi. Su observación permite el análisis espectral de los registros adquiridos, obteniéndose un modelo representado por la curva de dispersión de cada emplazamiento, de modo que mediante una inversión se obtiene el modelo de velocidad de propagación en función de la profundidad. A través de estos modelos, pueden obtenerse otros parámetros de interés sismológico. Estos resultados se representan sobre mapas isométricos para obtener una relación espacial de los mismos, particularmente conocido como zonación sísmica. De este análisis se extrae que la VS30 promedio del Campus no es baja en exceso, correspondiéndose a posteriori con los resultados de amplificación sísmica, período fundamental de resonancia del lugar y profundidad del sustrato rocoso. En última instancia se comprueba que los valores de amplificación sísmica máxima y el período al cual se produce posiblemente coincidan con los períodos fundamentales de resonancia de algunos edificios del Campus. ABSTRACT In South Campus at Polytechnic University of Madrid, a project has been carried out to obtain a proper subsoil description by applying ReMi tests, in collaboration with the Department of Geophysics of the National Geographic Institute. Through geophysical tests conducted locally, the ReMi (Refraction Microtremor) technique allows to establish the physical parameters of soil, which are of special interest in the field of civil engineering. This technique is part of passive seismic methods, often used in geophysical prospecting. It focuses in obtaining the underlying model of propagation velocity distribution of the shear wave according to depth and has the advantage of being able to use seismic ambient noise as a source of energy. It was developed in the Nevada Seismological Laboratory (USA) by Louie (2001) as an innovative technique for obtaining propagation velocities experimentally. It has several other advantages, including the direct observation of the dispersion of surface waves, which allows to reliably measure S wave velocity. This is a non-invasive, low cost and good resolution method, which can be applied in urban or sensitive environments where other prospection methods present difficulties. The propagation velocity of shear waves in the first 30 meters Vs30 is widely recognized as a valid equivalent parameter to geotechnically characterize the subsurface. It is mathematically related to surface wave's velocity of propagation, which are to observe using REMI technique. Spectral analysis of acquired data sets up a model represented by the dispersion curve at each site, so that, using an inversion process, propagation velocity model in relation to depth is obtained. Through this models, other seismologically interesting parameters can be obtained. These results are represented on isometric maps in order to obtain a spatial relationship between them, a process which is known as seismic zonation. This analysis infers that Vs30 at South Campus is not alarmingly low , corresponding with subsequent results of seismic amplification, fundamental period of resonance of soil and depth of bedrock. Ultimately, it's found that calculated values of soil's fundamental periods at which maximum seismic amplification occurs, may possibly match fundamental periods of some Campus buildings.