18 resultados para Rough Sets


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we axiomatically introduce fuzzy multi-measures on bounded lattices. In particular, we make a distinction between four different types of fuzzy set multi-measures on a universe X, considering both the usual or inverse real number ordering of this lattice and increasing or decreasing monotonicity with respect to the number of arguments. We provide results from which we can derive families of measures that hold for the applicable conditions in each case.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During the last few decades, new imaging techniques like X-ray computed tomography have made available rich and detailed information of the spatial arrangement of soil constituents, usually referred to as soil structure. Mathematical morphology provides a plethora of mathematical techniques to analyze and parameterize the geometry of soil structure. They provide a guide to design the process from image analysis to the generation of synthetic models of soil structure in order to investigate key features of flow and transport phenomena in soil. In this work, we explore the ability of morphological functions built over Minkowski functionals with parallel sets of the pore space to characterize and quantify pore space geometry of columns of intact soil. These morphological functions seem to discriminate the effects on soil pore space geometry of contrasting management practices in a Mediterranean vineyard, and they provide the first step toward identifying the statistical significance of the observed differences.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Esta tesis estudia el comportamiento de la región exterior de una capa límite turbulenta sin gradientes de presiones. Se ponen a prueba dos teorías relativamente bien establecidas. La teoría de semejanza para la pared supone que en el caso de haber una pared rugosa, el fluido sólo percibe el cambio en la fricción superficial que causa, y otros efectos secundarios quedarán confinados a una zona pegada a la pared. El consenso actual es que dicha teoría es aproximadamente cierta. En el extremo exterior de la capa límite existe una región producida por la interacción entre las estructuras turbulentas y el flujo irrotacional de la corriente libre llamada interfaz turbulenta/no turbulenta. La mayoría de los resultados al respecto sugieren la presencia de fuerzas de cortadura ligeramente más intensa, lo que la hace distinta al resto del flujo turbulento. Las propiedades de esa región probablemente cambien si la velocidad de crecimiento de la capa límite aumenta, algo que puede conseguirse aumentando la fricción en la pared. La rugosidad y la ingestión de masa están entonces relacionadas, y el comportamiento local de la interfaz turbulenta/no turbulenta puede explicar el motivo por el que las capas límite sobre paredes rugosas no se comportan como en el caso de tener paredes lisas precisamente en la zona exterior. Para estudiar las capas límite a números de Reynolds lo suficientemente elevados, se ha desarrollado un nuevo código de alta resolución para la simulación numérica directa de capas límite turbulentas sin gradiente de presión. Dicho código es capaz de simular capas límite en un intervalo de números de Reynolds entre ReT = 100 — 2000 manteniendo una buena escalabilidad hasta los dos millones de hilos en superordenadores de tipo Blue Gene/Q. Se ha guardado especial atención a la generación de condiciones de contorno a la entrada correctas. Los resultados obtenidos están en concordancia con los resultados previos, tanto en el caso de simulaciones como de experimentos. La interfaz turbulenta/no turbulenta de una capa límite se ha analizado usando un valor umbral del módulo de la vorticidad. Dicho umbral se considera un parámetro para analizar cada superficie obtenida de un contorno del módulo de la vorticidad. Se han encontrado dos regímenes distintos en función del umbral escogido con propiedades opuestas, separados por una transición topológica gradual. Las características geométricas de la zona escalan con o99 cuando u^/isdgg es la unidad de vorticidad. Las propiedades del íluido relativas a la posición del contorno de vorticidad han sido analizados para una serie de umbrales utilizando el campo de distancias esféricas, que puede obtenerse con independencia de la complejidad de la superficie de referencia. Las propiedades del fluido a una distancia dada del inerfaz también dependen del umbral de vorticidad, pero tienen características parecidas con independencia del número de Reynolds. La interacción entre la turbulencia y el flujo no turbulento se restringe a una zona muy fina con un espesor del orden de la escala de Kolmogorov local. Hacia el interior del flujo turbulento las propiedades son indistinguibles del resto de la capa límite. Se ha simulado una capa límite sin gradiente de presiones con una fuerza volumétrica cerca de la pared. La el forzado ha sido diseñado para aumentar la fricción en la pared sin introducir ningún efecto geométrico obvio. La simulación consta de dos dominios, un primer dominio más pequeño y a baja resolución que se encarga de generar condiciones de contorno correctas, y un segundo dominio mayor y a alta resolución donde se aplica el forzado. El estudio de los perfiles y los coeficientes de autocorrelación sugieren que los dos casos, el liso y el forzado, no colapsan más allá de la capa logarítmica por la complejidad geométrica de la zona intermitente, y por el hecho que la distancia a la pared no es una longitud característica. Los efectos causados por la geometría de la zona intermitente pueden evitarse utilizando el interfaz como referencia, y la distancia esférica para el análisis de sus propiedades. Las propiedades condicionadas del flujo escalan con 5QQ y u/uT, las dos únicas escalas contenidas en el modelo de semejanza de pared de Townsend, consistente con estos resultados. ABSTRACT This thesis studies the characteristics of the outer region of zero-pressure-gradient turbulent boundary layers at moderate Reynolds numbers. Two relatively established theories are put to test. The wall similarity theory states that with the presence of roughness, turbulent motion is mostly affected by the additional drag caused by the roughness, and that other secondary effects are restricted to a region very close to the wall. The consensus is that this theory is valid, but only as a first approximation. At the edge of the boundary layer there is a thin layer caused by the interaction between the turbulent eddies and the irroational fluid of the free stream, called turbulent/non-turbulent interface. The bulk of results about this layer suggest the presence of some localized shear, with properties that make it distinguishable from the rest of the turbulent flow. The properties of the interface are likely to change if the rate of spread of the turbulent boundary layer is amplified, an effect that is usually achieved by increasing the drag. Roughness and entrainment are therefore linked, and the local features of the turbulent/non-turbulent interface may explain the reason why rough-wall boundary layers deviate from the wall similarity theory precisely far from the wall. To study boundary layers at a higher Reynolds number, a new high-resolution code for the direct numerical simulation of a zero pressure gradient turbulent boundary layers over a flat plate has been developed. This code is able to simulate a wide range of Reynolds numbers from ReT =100 to 2000 while showing a linear weak scaling up to around two million threads in the BG/Q architecture. Special attention has been paid to the generation of proper inflow boundary conditions. The results are in good agreement with existing numerical and experimental data sets. The turbulent/non-turbulent interface of a boundary layer is analyzed by thresholding the vorticity magnitude field. The value of the threshold is considered a parameter in the analysis of the surfaces obtained from isocontours of the vorticity magnitude. Two different regimes for the surface can be distinguished depending on the threshold, with a gradual topological transition across which its geometrical properties change significantly. The width of the transition scales well with oQg when u^/udgg is used as a unit of vorticity. The properties of the flow relative to the position of the vorticity magnitude isocontour are analyzed within the same range of thresholds, using the ball distance field, which can be obtained regardless of the size of the domain and complexity of the interface. The properties of the flow at a given distance to the interface also depend on the threshold, but they are similar regardless of the Reynolds number. The interaction between the turbulent and the non-turbulent flow occurs in a thin layer with a thickness that scales with the Kolmogorov length. Deeper into the turbulent side, the properties are undistinguishable from the rest of the turbulent flow. A zero-pressure-gradient turbulent boundary layer with a volumetric near-wall forcing has been simulated. The forcing has been designed to increase the wall friction without introducing any obvious geometrical effect. The actual simulation is split in two domains, a smaller one in charge of the generation of correct inflow boundary conditions, and a second and larger one where the forcing is applied. The study of the one-point and twopoint statistics suggest that the forced and the smooth cases do not collapse beyond the logarithmic layer may be caused by the geometrical complexity of the intermittent region, and by the fact that the scaling with the wall-normal coordinate is no longer present. The geometrical effects can be avoided using the turbulent/non-turbulent interface as a reference frame, and the minimum distance respect to it. The conditional analysis of the vorticity field with the alternative reference frame recovers the scaling with 5QQ and v¡uT already present in the logarithmic layer, the only two length-scales allowed if Townsend’s wall similarity hypothesis is valid.