25 resultados para Ribbon features
Resumo:
Speech is the major function, emergence and which development radically changes all course of formation of the identity of the child already in the early childhood. If language and speech development in solitary born children is investigated today quite well, at twin children this process practically is not studied. Our research was carried out for the purpose of studying of an originality of mastering by speech by heterosexual children of pair of twins within communicative and pragmatist approach (T.N. Ushakov,G. V. Chirkina). Application of this approach to the analysis of process of communication at twin children allowed us to allocate those peculiar receptions and means of communication which they functionally develop in a situation of pair of twins, as allows them to show the phenomena of the speech which are not meeting at solitary born contemporaries. In this work results of supervision and research of pair of heterosexual twins of the second year of the life, carried out by a technique developed by us under the scientific guide of G. V. Chirkina
Resumo:
Video-based vehicle detection is the focus of increasing interest due to its potential towards collision avoidance. In particular, vehicle verification is especially challenging due to the enormous variability of vehicles in size, color, pose, etc. In this paper, a new approach based on supervised learning using Principal Component Analysis (PCA) is proposed that addresses the main limitations of existing methods. Namely, in contrast to classical approaches which train a single classifier regardless of the relative position of the candidate (thus ignoring valuable pose information), a region-dependent analysis is performed by considering four different areas. In addition, a study on the evolution of the classification performance according to the dimensionality of the principal subspace is carried out using PCA features within a SVM-based classification scheme. Indeed, the experiments performed on a publicly available database prove that PCA dimensionality requirements are region-dependent. Hence, in this work, the optimal configuration is adapted to each of them, rendering very good vehicle verification results.
Resumo:
MFCC coefficients extracted from the power spectral density of speech as a whole, seems to have become the de facto standard in the area of speaker recognition, as demonstrated by its use in almost all systems submitted to the 2013 Speaker Recognition Evaluation (SRE) in Mobile Environment [1], thus relegating to background this component of the recognition systems. However, in this article we will show that selecting the adequate speaker characterization system is as important as the selection of the classifier. To accomplish this we will compare the recognition rates achieved by different recognition systems that relies on the same classifier (GMM-UBM) but connected with different feature extraction systems (based on both classical and biometric parameters). As a result we will show that a gender dependent biometric parameterization with a simple recognition system based on GMM- UBM paradigm provides very competitive or even better recognition rates when compared to more complex classification systems based on classical features
Resumo:
La cuestión principal abordada en esta tesis doctoral es la mejora de los sistemas biométricos de reconocimiento de personas a partir de la voz, proponiendo el uso de una nueva parametrización, que hemos denominado parametrización biométrica extendida dependiente de género (GDEBP en sus siglas en inglés). No se propone una ruptura completa respecto a los parámetros clásicos sino una nueva forma de utilizarlos y complementarlos. En concreto, proponemos el uso de parámetros diferentes dependiendo del género del locutor, ya que como es bien sabido, la voz masculina y femenina presentan características diferentes que deberán modelarse, por tanto, de diferente manera. Además complementamos los parámetros clásicos utilizados (MFFC extraídos de la señal de voz), con un nuevo conjunto de parámetros extraídos a partir de la deconstrucción de la señal de voz en sus componentes de fuente glótica (más relacionada con el proceso y órganos de fonación y por tanto con características físicas del locutor) y de tracto vocal (más relacionada con la articulación acústica y por tanto con el mensaje emitido). Para verificar la validez de esta propuesta se plantean diversos escenarios, utilizando diferentes bases de datos, para validar que la GDEBP permite generar una descripción más precisa de los locutores que los parámetros MFCC clásicos independientes del género. En concreto se plantean diferentes escenarios de identificación sobre texto restringido y texto independiente utilizando las bases de datos de HESPERIA y ALBAYZIN. El trabajo también se completa con la participación en dos competiciones internacionales de reconocimiento de locutor, NIST SRE (2010 y 2012) y MOBIO 2013. En el primer caso debido a la naturaleza de las bases de datos utilizadas se obtuvieron resultados cercanos al estado del arte, mientras que en el segundo de los casos el sistema presentado obtuvo la mejor tasa de reconocimiento para locutores femeninos. A pesar de que el objetivo principal de esta tesis no es el estudio de sistemas de clasificación, sí ha sido necesario analizar el rendimiento de diferentes sistemas de clasificación, para ver el rendimiento de la parametrización propuesta. En concreto, se ha abordado el uso de sistemas de reconocimiento basados en el paradigma GMM-UBM, supervectores e i-vectors. Los resultados que se presentan confirman que la utilización de características que permitan describir los locutores de manera más precisa es en cierto modo más importante que la elección del sistema de clasificación utilizado por el sistema. En este sentido la parametrización propuesta supone un paso adelante en la mejora de los sistemas de reconocimiento biométrico de personas por la voz, ya que incluso con sistemas de clasificación relativamente simples se consiguen tasas de reconocimiento realmente competitivas. ABSTRACT The main question addressed in this thesis is the improvement of automatic speaker recognition systems, by the introduction of a new front-end module that we have called Gender Dependent Extended Biometric Parameterisation (GDEBP). This front-end do not constitute a complete break with respect to classical parameterisation techniques used in speaker recognition but a new way to obtain these parameters while introducing some complementary ones. Specifically, we propose a gender-dependent parameterisation, since as it is well known male and female voices have different characteristic, and therefore the use of different parameters to model these distinguishing characteristics should provide a better characterisation of speakers. Additionally, we propose the introduction of a new set of biometric parameters extracted from the components which result from the deconstruction of the voice into its glottal source estimate (close related to the phonation process and the involved organs, and therefore the physical characteristics of the speaker) and vocal tract estimate (close related to acoustic articulation and therefore to the spoken message). These biometric parameters constitute a complement to the classical MFCC extracted from the power spectral density of speech as a whole. In order to check the validity of this proposal we establish different practical scenarios, using different databases, so we can conclude that a GDEBP generates a more accurate description of speakers than classical approaches based on gender-independent MFCC. Specifically, we propose scenarios based on text-constrain and text-independent test using HESPERIA and ALBAYZIN databases. This work is also completed with the participation in two international speaker recognition evaluations: NIST SRE (2010 and 2012) and MOBIO 2013, with diverse results. In the first case, due to the nature of the NIST databases, we obtain results closed to state-of-the-art although confirming our hypothesis, whereas in the MOBIO SRE we obtain the best simple system performance for female speakers. Although the study of classification systems is beyond the scope of this thesis, we found it necessary to analise the performance of different classification systems, in order to verify the effect of them on the propose parameterisation. In particular, we have addressed the use of speaker recognition systems based on the GMM-UBM paradigm, supervectors and i-vectors. The presented results confirm that the selection of a set of parameters that allows for a more accurate description of the speakers is as important as the selection of the classification method used by the biometric system. In this sense, the proposed parameterisation constitutes a step forward in improving speaker recognition systems, since even when using relatively simple classification systems, really competitive recognition rates are achieved.
Resumo:
Performance of heave plates used in offshore structures is strongly influenced by their added mass and damping, which are affected by proximity to a boundary. A previous paper by the authors presented numerical simulations of the flow around a circular solid disk oscillating at varying elevations from seabed [1]. The force calculated was used to evaluate the added mass and damping coefficients for the disk. The simulations suggest that as the structure moves closer to the seabed the added mass and damping coefficients (Ca and Cb) increases continuously. In order to understand the physics behind the added mass and damping trends, when a heave plate is moving near a seabed or closer to the free surface, the flow characteristics around the heave plate are examined numerically in this paper. Flow around oscillating disks is dominated by generation and development of phase-dependent vortical structures, characterized by the KC number and the distance from the seabed or free surface to the heave plate. Numerical calculations presented in this paper have comprised the qualitative analysis of the vortex shedding and the investigation of the links between such vortex shedding and, on one hand the damping coefficient, and on the other hand, pairing mechanisms such as the shedding angle.
Resumo:
The Shopping centre is a long term investment in which Greenfield development decisions are often taken based on risks analysis regarding construction costs, location, competition, market and an expected DCF. Furthermore, integration between the building design, project planning, operational costs and investment analysis is not entirely considered by the investor at the decision making stage. The absence of such information tends to produce certain negative impacts on the future running costs and annual maintenance of the building, especially on energy demand and other occupancy expenses paid by the tenants to the landlord. From the investor´s point of view, this blind spot in strategy development will possibly decrease their profit margin as changes in the occupancy expenses[ ] have a direct outcome on the profit margin. In order to try to reduce some higher operating cost components such as energy use and other utility savings as well as their CO2 emissions, quite a few income properties worldwide have some type of environmental label such as BREEAM and LEED. The drawback identified in this labelling is that usually the investments required to get an ecolabel are high and the investor finds no direct evidence that it increases market value. However there is research on certified commercial properties (especially offices) that shows better performance in terms of occupancy rate and rental cost (Warren-Myers, 2012). Additionally, Sayce (2013) says that the certification only provides a quick reference point i.e. the lack of a certificate does not indicate that a building is not sustainable or efficient. Based on the issues described above, this research compares important components of the development stages such as investments costs, concept/ strategy development as well as the current investor income and property value. The subjects for this analysis are a shopping centre designed with passive cooling/bioclimatic strategies evaluated at the decision making stage, a certified regional shopping centre and a non-certified standard regional shopping centre. Moreover, the proposal intends to provide decision makers with some tools for linking green design features to the investment analysis in order to optimize the decision making process when looking into cost savings and design quality.
Resumo:
This paper presents new techniques with relevant improvements added to the primary system presented by our group to the Albayzin 2012 LRE competition, where the use of any additional corpora for training or optimizing the models was forbidden. In this work, we present the incorporation of an additional phonotactic subsystem based on the use of phone log-likelihood ratio features (PLLR) extracted from different phonotactic recognizers that contributes to improve the accuracy of the system in a 21.4% in terms of Cavg (we also present results for the official metric during the evaluation, Fact). We will present how using these features at the phone state level provides significant improvements, when used together with dimensionality reduction techniques, especially PCA. We have also experimented with applying alternative SDC-like configurations on these PLLR features with additional improvements. Also, we will describe some modifications to the MFCC-based acoustic i-vector system which have also contributed to additional improvements. The final fused system outperformed the baseline in 27.4% in Cavg.
Resumo:
An automatic machine learning strategy for computing the 3D structure of monocular images from a single image query using Local Binary Patterns is presented. The 3D structure is inferred through a training set composed by a repository of color and depth images, assuming that images with similar structure present similar depth maps. Local Binary Patterns are used to characterize the structure of the color images. The depth maps of those color images with a similar structure to the query image are adaptively combined and filtered to estimate the final depth map. Using public databases, promising results have been obtained outperforming other state-of-the-art algorithms and with a computational cost similar to the most efficient 2D-to-3D algorithms.
Resumo:
Perceptual voice evaluation according to the GRBAS scale is modelled using a linear combination of acoustic parameters calculated after a filter-bank analysis of the recorded voice signals. Modelling results indicate that for breathiness and asthenia more than 55% of the variance of perceptual rates can be explained by such a model, with only 4 latent variables. Moreover, the greatest part of the explained variance can be attributed to only one or two latent variables similarly weighted by all 5 listeners involved in the experiment. Correlation factors between actual rates and model predictions around 0.6 are obtained.
Resumo:
Video Quality Assessment needs to correspond to human perception. Pixel-based metrics (PSNR or MSE) fail in many circumstances for not taking into account the spatio-temporal property of human's visual perception. In this paper we propose a new pixel-weighted method to improve video quality metrics for artifacts evaluation. The method applies a psychovisual model based on motion, level of detail, pixel location and the appearance of human faces, which approximate the quality to the human eye's response. Subjective tests were developed to adjust the psychovisual model for demonstrating the noticeable improvement of an algorithm when weighting the pixels according to the factors analyzed instead of treating them equally. The analysis developed demonstrates the necessity of models adapted to the specific visualization of contents and the model presents an advance in quality to be applied over sequences when a determined artifact is analyzed.