23 resultados para Pulse widths


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose and experimentally demonstrate a potentially integrable optical scheme to generate high order UWB pulses. The technique is based on exploiting the cross phase modulation generated in an InGaAsP Mach-Zehnder interferometer containing integrated semiconductor optical amplifiers, and is also adaptable to different pulse modulation formats through an optical processing unit which allows to control of the amplitude, polarity and time delay of the generated taps.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gender detection is a very important objective to improve efficiency in tasks as speech or speaker recognition, among others. Traditionally gender detection has been focused on fundamental frequency (f0) and cepstral features derived from voiced segments of speech. The methodology presented here consists in obtaining uncorrelated glottal and vocal tract components which are parameterized as mel-frequency coefficients. K-fold and cross-validation using QDA and GMM classifiers showed that better detection rates are reached when glottal source and vocal tract parameters are used in a gender-balanced database of running speech from 340 speakers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Advanced optical modulation format polarization-division multiplexed quadrature phase shift keying (PDM-QPSK) has become a key ingredient in the design of 100 and 200-Gb/s dense wavelength-division multiplexed (DWDM) networks. The performance of this format varies according to the shape of the pulses employed by the optical carrier: non-return to zero (NRZ), return to zero (RZ) or carrier-suppressed return to zero (CSRZ). In this paper we analyze the tolerance of PDM-QPSK to linear and nonlinear optical impairments: amplified spontaneous emission (ASE) noise, crosstalk, distortion by optical filtering, chromatic dispersion (CD), polarization mode dispersion (PMD) and fiber Kerr nonlinearities. RZ formats with a low duty cycle value reduce pulse-to-pulse interaction obtaining a higher tolerance to CD, PMD and intrachannel nonlinearities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Linear Fresnel collectors still present a large margin to improve efficiency. Solar fields of this kind installed until current time, both prototypes and commercial plants, are designed with widths and shifts of mirrors that are constant across the solar field. However, the physical processes that limit the width of the mirrors depend on their relative locations to the receiver; the same applies to shading and blocking effects, that oblige to have a minimum shift between mirrors. In this work such phenomena are studied analytically in order to obtain a coherent design, able to improve the efficiency with no increase in cost. A ray tracing simulation along one year has been carried out for a given design, obtaining a moderate increase in radiation collecting efficiency in comparison to conventional designs. Moreover, this analytic theory can guide future designs aiming at fully optimizing linear Fresnel collectors' performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The first feasibility study of using dual-probe heated fiber optics with distributed temperature sensing to measure soil volumetric heat capacity and soil water content is presented. Although results using different combinations of cables demonstrate feasibility, further work is needed to gain accuracy, including a model to account for the finite dimension and the thermal influence of the probes. Implementation of the dual-probe heat-pulse (DPHP) approach for measurement of volumetric heat capacity (C) and water content (θ) with distributed temperature sensing heated fiber optic (FO) systems presents an unprecedented opportunity for environmental monitoring (e.g., simultaneous measurement at thousands of points). We applied uniform heat pulses along a FO cable and monitored the thermal response at adjacent cables. We tested the DPHP method in the laboratory using multiple FO cables at a range of spacings. The amplitude and phase shift in the heat signal with distance was found to be a function of the soil volumetric heat capacity. Estimations of C at a range of moisture contents (θ = 0.09– 0.34 m3 m−3) suggest the feasibility of measurement via responsiveness to the changes in θ, although we observed error with decreasing soil water contents (up to 26% at θ = 0.09 m3 m−3). Optimization will require further models to account for the finite radius and thermal influence of the FO cables. Although the results indicate that the method shows great promise, further study is needed to quantify the effects of soil type, cable spacing, and jacket configurations on accuracy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose the use of a polarization based interferometer with variable transfer function for the generation of temporally flat top pulses from gain switched single mode semiconductor lasers. The main advantage of the presented technique is its flexibility in terms of input pulse characteristics, as pulse duration, spectral bandwidth and operating wavelength. Theoretical predictions and experimental demonstrations are presented and the proposed technique is applied to two different semiconductor laser sources emitting in the 1550 nm region. Flat top pulses are successfully obtained with input seed pulses with duration ranging from 40 ps to 100 ps.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In a general situation a non-uniform velocity field gives rise to a shift of the otherwise straight acoustic pulse trajectory between the transmitter and receiver transducers of a sonic anemometer. The aim of this paper is to determine the effects of trajectory shifts on the velocity as measured by the sonic anemometer. This determination has been accomplished by developing a mathematical model of the measuring process carried out by sonic anemometers; a model which includes the non-straight trajectory effect. The problem is solved by small perturbation techniques, based on the relevant small parameter of the problem, the Mach number of the reference flow, M. As part of the solution, a general analytical expression for the deviations of the computed measured speed from the nominal speed has been obtained. The correction terms of both the transit time and of the measured speed are of M 2 order in rotational velocity field. The method has been applied to three simple, paradigmatic flows: one-directional horizontal and vertical shear flows, and mixed with a uniform horizontal flow.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this letter, we propose and experimentally demonstrate a compact, flexible, and scalable ultrawideband (UWB) generator based on the merge of phase-to-intensity conversion and pulse shaping employing an fiber Bragg Grating-based superstructure. Our approach offers the capacity for generating high-order UWB pulses by means of the combination of various low-order derivatives. Moreover, the scheme permits the implementation of binary and multilevel modulation formats. Experimental measurements of the generated UWB pulses, in both time and frequency domain, are presented revealing efficiency and a proper fit in terms of Federal Communications Commission settled standards.