23 resultados para Pipe joint


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Computing the modal parameters of large structures in Operational Modal Analysis often requires to process data from multiple non simultaneously recorded setups of sensors. These setups share some sensors in common, the so-called reference sensors that are fixed for all the measurements, while the other sensors are moved from one setup to the next. One possibility is to process the setups separately what result in different modal parameter estimates for each setup. Then the reference sensors are used to merge or glue the different parts of the mode shapes to obtain global modes, while the natural frequencies and damping ratios are usually averaged. In this paper we present a state space model that can be used to process all setups at once so the global mode shapes are obtained automatically and subsequently only a value for the natural frequency and damping ratio of each mode is computed. We also present how this model can be estimated using maximum likelihood and the Expectation Maximization algorithm. We apply this technique to real data measured at a footbridge.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Un caloducto en bucle cerrado o Loop Heat Pipe (LHP) es un dispositivo de transferencia de calor cuyo principio de operación se basa en la evaporación/condensación de un fluido de trabajo, que es bombeado a través de un circuito cerrado gracias a fuerzas de capilaridad. Gracias a su flexibilidad, su baja masa y su mínimo (incluso nulo) consumo de potencia, su principal aplicación ha sido identificada como parte del subsistema de control térmico de vehículos espaciales. En el presente trabajo se ha desarrollado un LHP capaz de funcionar eficientemente a temperaturas de hasta 125 oC, siguiendo la actual tendencia de los equipos a bordo de satélites de incrementar su temperatura de operación. En la selección del diseño optimo para dicho LHP, la compatibilidad entre materiales y fluido de trabajo se identificó como uno de los puntos clave. Para seleccionar la mejor combinación, se llevó a cabo una exhaustiva revisión del estado del arte, además de un estudio especifico que incluía el desarrollo de un banco de ensayos de compatibilidad. Como conclusión, la combinación seleccionada como la candidata idónea para ser integrada en el LHP capaz de operar hasta 125 oC fue un evaporador de acero inoxidable, líneas de titanio y amoniaco como fluido de trabajo. En esa línea se diseñó y fabricó un prototipo para ensayos y se desarrolló un modelo de simulación con EcosimPro para evaluar sus prestaciones. Se concluyó que el diseño era adecuado para el rango de operación definido. La incompatibilidad entre el fluido de trabajo y los materiales del LHP está ligada a la generación de gases no condensables. Para un estudio más detallado de los efectos de dichos gases en el funcionamiento del LHP se analizó su comportamiento con diferentes cantidades de nitrógeno inyectadas en su cámara de compensación, simulando un gas no condensable formado en el interior del dispositivo. El estudio se basó en el análisis de las temperaturas medidas experimentalmente a distintos niveles de potencia y temperatura de sumidero o fuente fría. Adicionalmente, dichos resultados se compararon con las predicciones obtenidas por medio del modelo en EcosimPro. Las principales conclusiones obtenidas fueron dos. La primera indica que una cantidad de gas no condensable más de dos veces mayor que la cantidad generada al final de la vida de un satélite típico de telecomunicaciones (15 años) tiene efectos casi despreciables en el funcionamiento del LHP. La segunda es que el principal efecto del gas no condensable es una disminución de la conductancia térmica, especialmente a bajas potencias y temperaturas de sumidero. El efecto es más significativo cuanto mayor es la cantidad de gas añadida. Asimismo, durante la campaña de ensayos se observó un fenómeno no esperado para grandes cantidades de gas no condensable. Dicho fenómeno consiste en un comportamiento oscilatorio, detectado tanto en los ensayos como en la simulación. Este efecto es susceptible de una investigación más profunda y los resultados obtenidos pueden constituir la base para dicha tarea. ABSTRACT Loop Heat Pipes (LHPs) are heat transfer devices whose operating principle is based on the evaporation/condensation of a working fluid, and which use capillary pumping forces to ensure the fluid circulation. Thanks to their flexibility, low mass and minimum (even null) power consumption, their main application has been identified as part of the thermal control subsystem in spacecraft. In the present work, an LHP able to operate efficiently up to 125 oC has been developed, which is in line with the current tendency of satellite on-board equipment to increase their operating temperatures. In selecting the optimal LHP design for the elevated temperature application, the compatibility between the materials and working fluid has been identified as one of the main drivers. An extensive literature review and a dedicated trade-off were performed, in order to select the optimal combination of fluids and materials for the LHP. The trade-off included the development of a dedicated compatibility test stand. In conclusion, the combination of stainless steel evaporator, titanium piping and ammonia as working fluid was selected as the best candidate to operate up to 125 oC. An LHP prototype was designed and manufactured and a simulation model in EcosimPro was developed to evaluate its performance. The first conclusion was that the defined LHP was suitable for the defined operational range. Incompatibility between the working fluid and LHP materials is linked to Non Condensable Gas (NCG) generation. Therefore, the behaviour of the LHP developed with different amounts of nitrogen injected in its compensation chamber to simulate NCG generation, was analyzed. The LHP performance was studied by analysis of the test results at different temperatures and power levels. The test results were also compared to simulations in EcosimPro. Two additional conclusions can be drawn: (i) the effects of an amount of more than two times the expected NCG at the end of life of a typical telecommunications satellite (15 years) is almost negligible on the LHP operation, and (ii) the main effect of the NCG is a decrease in the LHP thermal conductance, especially at low temperatures and low power levels. This decrease is more significant with the progressive addition of NCG. An unexpected phenomenon was observed in the LHP operation with large NCG amounts. Namely, an oscillatory behaviour, which was observed both in the tests and the simulation. This effect provides the basis for further studies concerning oscillations in LHPs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stress singularities appear at the extremities of an adhesive bond. They can produce a damage mechanism that we assimilate in this Note to a crack. The energy release rate permits to characterize its evolution. But a very refined mesh would be necessary for a real structure. Using an asymptotic method based on the small thickness of the bond a limit model with a different local behaviour is suggested. It leads to an approximation of the energy release rate

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, we use large eddy simulations (LES) and Lagrangian tracking to study the influence of gravity on particle statistics in a fully developed turbulent upward/downward flow in a vertical channel and pipe at matched Kàrmàn number. Only drag and gravity are considered in the equation of motion for solid particles, which are assumed to have no influence on the flow field. Particle interactions with the wall are fully elastic. Our findings obtained from the particle statistics confirm that: (i) the gravity seems to modify both the quantitative and qualitative behavior of the particle distribution and statistics of the particle velocity in wall normal direction; (ii) however, only the quantitative behavior of velocity particle in streamwise direction and the root mean square of velocity components is modified; (iii) the statistics of fluid and particles coincide very well near the wall in channel and pipe flow with equal Kàrmàn number; (iv) pipe curvature seems to have quantitative and qualitative influence on the particle velocity and on the particle concentration in wall normal direction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Validating modern oceanographic theories using models produced through stereo computer vision principles has recently emerged. Space-time (4-D) models of the ocean surface may be generated by stacking a series of 3-D reconstructions independently generated for each time instant or, in a more robust manner, by simultaneously processing several snapshots coherently in a true ?4-D reconstruction.? However, the accuracy of these computer-vision-generated models is subject to the estimations of camera parameters, which may be corrupted under the influence of natural factors such as wind and vibrations. Therefore, removing the unpredictable errors of the camera parameters is necessary for an accurate reconstruction. In this paper, we propose a novel algorithm that can jointly perform a 4-D reconstruction as well as correct the camera parameter errors introduced by external factors. The technique is founded upon variational optimization methods to benefit from their numerous advantages: continuity of the estimated surface in space and time, robustness, and accuracy. The performance of the proposed algorithm is tested using synthetic data produced through computer graphics techniques, based on which the errors of the camera parameters arising from natural factors can be simulated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In adhesion, the wetting process depends on three fundamental factors: the surface topography of the adherend, the viscosity of the adhesive, and the surface energy of both. The aim of this paper is to study the influence of viscosity and surface roughness on the wetting and their effect on the bond strength. For this purpose, an acrylic adhesive with different viscosities was synthesized and some properties, such as viscosity and surface tension, were studied before adhesive curing took place. Furthermore, the contact angle and the lap-shear strength were analyzed using aluminum adherends with two different roughnesses. Scanning electron microscopy was used to determine the effect of the viscosity and the roughness on the joint interface. The results showed that the adhesive exhibits an optimal value of viscosity. Below this value, at low viscosities, the low neoprene content produces poor bond strength due to the reduced toughness of the adhesive. Additionally, it also produces a high shrinkage during curing, which leads to the apparition of residual stresses that weakens the interfacial strength. However, once the optimum value, an increase in the viscosity produces a negative effect on the joint strength as a result of an important decrease in the wettability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The field of exoskeletons and wearable devices for walking assistance and rehabilitation has advanced considerably over the past few years. Currently, commercial devices contain joints with stiff actuators that cannot adapt to unpredictable environments. These actuators consume more energy and may not be appropriate for human-machine interactions. Thus, adjustable compliant actuators are being cautiously incorporated into new exoskeletons and active orthoses. Some simulation-based studies have evaluated the benefits of incorporating compliant joints into such devices. Another reason that compliant actuators are desirable is that spasticity and spasmodic movements are common among patients with motor deficiencies; compliant actuators could efficiently absorb these perturbations and improve joint control. In this paper, we provide an overview of the requirements that must be fulfilled by these actuators while evaluating the behavior of leg joints in the locomotion cycle. A brief review of existing compliant actuators is conducted, and our proposed variable stiffness actuator prototype is presented and evaluated. The actuator prototype is implemented in an exoskeleton knee joint operated by a state machine that exploits the dynamics of the leg, resulting in a reduction in actuation energy demand and better adaptability to disturbances.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper studies the impact that different approaches of modeling the real-time use of the secondary regulation reserves have in the joint energy and reserve hourly scheduling of a price-taker pumped-storage hydropower plant. The unexpected imbalance costs due to the error between the forecasted real-time use of the reserves and the actual value are also studied and evaluated for the different approaches. The proposed methodology is applied to a daily-cycle and closed-loop pumped-storage hydropower plant. Preliminary results show that the deviations in the water volume at the end of the day are important when the percentage of the real-time use of reserves is unknown in advance, and also that the total income in all approaches after correcting these deviations is significantly lower than the maximum theoretical income.