17 resultados para Parametric VaR (Value-at-Risk)
Resumo:
Esta tesis aborda metodologías para el cálculo de riesgo de colisión de satélites. La minimización del riesgo de colisión se debe abordar desde dos puntos de vista distintos. Desde el punto de vista operacional, es necesario filtrar los objetos que pueden presentar un encuentro entre todos los objetos que comparten el espacio con un satélite operacional. Puesto que las órbitas, del objeto operacional y del objeto envuelto en la colisión, no se conocen perfectamente, la geometría del encuentro y el riesgo de colisión deben ser evaluados. De acuerdo con dicha geometría o riesgo, una maniobra evasiva puede ser necesaria para evitar la colisión. Dichas maniobras implican un consumo de combustible que impacta en la capacidad de mantenimiento orbital y por tanto de la visa útil del satélite. Por tanto, el combustible necesario a lo largo de la vida útil de un satélite debe ser estimado en fase de diseño de la misión para una correcta definición de su vida útil, especialmente para satélites orbitando en regímenes orbitales muy poblados. Los dos aspectos, diseño de misión y aspectos operacionales en relación con el riesgo de colisión están abordados en esta tesis y se resumen en la Figura 3. En relación con los aspectos relacionados con el diseño de misión (parte inferior de la figura), es necesario evaluar estadísticamente las características de de la población espacial y las teorías que permiten calcular el número medio de eventos encontrados por una misión y su capacidad de reducir riesgo de colisión. Estos dos aspectos definen los procedimientos más apropiados para reducir el riesgo de colisión en fase operacional. Este aspecto es abordado, comenzando por la teoría descrita en [Sánchez-Ortiz, 2006]T.14 e implementada por el autor de esta tesis en la herramienta ARES [Sánchez-Ortiz, 2004b]T.15 proporcionada por ESA para la evaluación de estrategias de evitación de colisión. Esta teoría es extendida en esta tesis para considerar las características de los datos orbitales disponibles en las fases operacionales de un satélite (sección 4.3.3). Además, esta teoría se ha extendido para considerar riesgo máximo de colisión cuando la incertidumbre de las órbitas de objetos catalogados no es conocida (como se da el caso para los TLE), y en el caso de querer sólo considerar riesgo de colisión catastrófico (sección 4.3.2.3). Dichas mejoras se han incluido en la nueva versión de ARES [Domínguez-González and Sánchez-Ortiz, 2012b]T.12 puesta a disposición a través de [SDUP,2014]R.60. En fase operacional, los catálogos que proporcionan datos orbitales de los objetos espaciales, son procesados rutinariamente, para identificar posibles encuentros que se analizan en base a algoritmos de cálculo de riesgo de colisión para proponer maniobras de evasión. Actualmente existe una única fuente de datos públicos, el catálogo TLE (de sus siglas en inglés, Two Line Elements). Además, el Joint Space Operation Center (JSpOC) Americano proporciona mensajes con alertas de colisión (CSM) cuando el sistema de vigilancia americano identifica un posible encuentro. En función de los datos usados en fase operacional (TLE o CSM), la estrategia de evitación puede ser diferente debido a las características de dicha información. Es preciso conocer las principales características de los datos disponibles (respecto a la precisión de los datos orbitales) para estimar los posibles eventos de colisión encontrados por un satélite a lo largo de su vida útil. En caso de los TLE, cuya precisión orbital no es proporcionada, la información de precisión orbital derivada de un análisis estadístico se puede usar también en el proceso operacional así como en el diseño de la misión. En caso de utilizar CSM como base de las operaciones de evitación de colisiones, se conoce la precisión orbital de los dos objetos involucrados. Estas características se han analizado en detalle, evaluando estadísticamente las características de ambos tipos de datos. Una vez concluido dicho análisis, se ha analizado el impacto de utilizar TLE o CSM en las operaciones del satélite (sección 5.1). Este análisis se ha publicado en una revista especializada [Sánchez-Ortiz, 2015b]T.3. En dicho análisis, se proporcionan recomendaciones para distintas misiones (tamaño del satélite y régimen orbital) en relación con las estrategias de evitación de colisión para reducir el riesgo de colisión de manera significativa. Por ejemplo, en el caso de un satélite en órbita heliosíncrona en régimen orbital LEO, el valor típico del ACPL que se usa de manera extendida es 10-4. Este valor no es adecuado cuando los esquemas de evitación de colisión se realizan sobre datos TLE. En este caso, la capacidad de reducción de riesgo es prácticamente nula (debido a las grandes incertidumbres de los datos TLE) incluso para tiempos cortos de predicción. Para conseguir una reducción significativa del riesgo, sería necesario usar un ACPL en torno a 10-6 o inferior, produciendo unas 10 alarmas al año por satélite (considerando predicciones a un día) o 100 alarmas al año (con predicciones a tres días). Por tanto, la principal conclusión es la falta de idoneidad de los datos TLE para el cálculo de eventos de colisión. Al contrario, usando los datos CSM, debido a su mejor precisión orbital, se puede obtener una reducción significativa del riesgo con ACPL en torno a 10-4 (considerando 3 días de predicción). Incluso 5 días de predicción pueden ser considerados con ACPL en torno a 10-5. Incluso tiempos de predicción más largos se pueden usar (7 días) con reducción del 90% del riesgo y unas 5 alarmas al año (en caso de predicciones de 5 días, el número de maniobras se mantiene en unas 2 al año). La dinámica en GEO es diferente al caso LEO y hace que el crecimiento de las incertidumbres orbitales con el tiempo de propagación sea menor. Por el contrario, las incertidumbres derivadas de la determinación orbital son peores que en LEO por las diferencias en las capacidades de observación de uno y otro régimen orbital. Además, se debe considerar que los tiempos de predicción considerados para LEO pueden no ser apropiados para el caso de un satélite GEO (puesto que tiene un periodo orbital mayor). En este caso usando datos TLE, una reducción significativa del riesgo sólo se consigue con valores pequeños de ACPL, produciendo una alarma por año cuando los eventos de colisión se predicen a un día vista (tiempo muy corto para implementar maniobras de evitación de colisión).Valores más adecuados de ACPL se encuentran entre 5•10-8 y 10-7, muy por debajo de los valores usados en las operaciones actuales de la mayoría de las misiones GEO (de nuevo, no se recomienda en este régimen orbital basar las estrategias de evitación de colisión en TLE). Los datos CSM permiten una reducción de riesgo apropiada con ACPL entre 10-5 y 10-4 con tiempos de predicción cortos y medios (10-5 se recomienda para predicciones a 5 o 7 días). El número de maniobras realizadas sería una en 10 años de misión. Se debe notar que estos cálculos están realizados para un satélite de unos 2 metros de radio. En el futuro, otros sistemas de vigilancia espacial (como el programa SSA de la ESA), proporcionarán catálogos adicionales de objetos espaciales con el objetivo de reducir el riesgo de colisión de los satélites. Para definir dichos sistemas de vigilancia, es necesario identificar las prestaciones del catalogo en función de la reducción de riesgo que se pretende conseguir. Las características del catálogo que afectan principalmente a dicha capacidad son la cobertura (número de objetos incluidos en el catalogo, limitado principalmente por el tamaño mínimo de los objetos en función de las limitaciones de los sensores utilizados) y la precisión de los datos orbitales (derivada de las prestaciones de los sensores en relación con la precisión de las medidas y la capacidad de re-observación de los objetos). El resultado de dicho análisis (sección 5.2) se ha publicado en una revista especializada [Sánchez-Ortiz, 2015a]T.2. Este análisis no estaba inicialmente previsto durante la tesis, y permite mostrar como la teoría descrita en esta tesis, inicialmente definida para facilitar el diseño de misiones (parte superior de la figura 1) se ha extendido y se puede aplicar para otros propósitos como el dimensionado de un sistema de vigilancia espacial (parte inferior de la figura 1). La principal diferencia de los dos análisis se basa en considerar las capacidades de catalogación (precisión y tamaño de objetos observados) como una variable a modificar en el caso de un diseño de un sistema de vigilancia), siendo fijas en el caso de un diseño de misión. En el caso de las salidas generadas en el análisis, todos los aspectos calculados en un análisis estadístico de riesgo de colisión son importantes para diseño de misión (con el objetivo de calcular la estrategia de evitación y la cantidad de combustible a utilizar), mientras que en el caso de un diseño de un sistema de vigilancia, los aspectos más importantes son el número de maniobras y falsas alarmas (fiabilidad del sistema) y la capacidad de reducción de riesgo (efectividad del sistema). Adicionalmente, un sistema de vigilancia espacial debe ser caracterizado por su capacidad de evitar colisiones catastróficas (evitando así in incremento dramático de la población de basura espacial), mientras que el diseño de una misión debe considerar todo tipo de encuentros, puesto que un operador está interesado en evitar tanto las colisiones catastróficas como las letales. Del análisis de las prestaciones (tamaño de objetos a catalogar y precisión orbital) requeridas a un sistema de vigilancia espacial se concluye que ambos aspectos han de ser fijados de manera diferente para los distintos regímenes orbitales. En el caso de LEO se hace necesario observar objetos de hasta 5cm de radio, mientras que en GEO se rebaja este requisito hasta los 100 cm para cubrir las colisiones catastróficas. La razón principal para esta diferencia viene de las diferentes velocidades relativas entre los objetos en ambos regímenes orbitales. En relación con la precisión orbital, ésta ha de ser muy buena en LEO para poder reducir el número de falsas alarmas, mientras que en regímenes orbitales más altos se pueden considerar precisiones medias. En relación con los aspectos operaciones de la determinación de riesgo de colisión, existen varios algoritmos de cálculo de riesgo entre dos objetos espaciales. La Figura 2 proporciona un resumen de los casos en cuanto a algoritmos de cálculo de riesgo de colisión y como se abordan en esta tesis. Normalmente se consideran objetos esféricos para simplificar el cálculo de riesgo (caso A). Este caso está ampliamente abordado en la literatura y no se analiza en detalle en esta tesis. Un caso de ejemplo se proporciona en la sección 4.2. Considerar la forma real de los objetos (caso B) permite calcular el riesgo de una manera más precisa. Un nuevo algoritmo es definido en esta tesis para calcular el riesgo de colisión cuando al menos uno de los objetos se considera complejo (sección 4.4.2). Dicho algoritmo permite calcular el riesgo de colisión para objetos formados por un conjunto de cajas, y se ha presentado en varias conferencias internacionales. Para evaluar las prestaciones de dicho algoritmo, sus resultados se han comparado con un análisis de Monte Carlo que se ha definido para considerar colisiones entre cajas de manera adecuada (sección 4.1.2.3), pues la búsqueda de colisiones simples aplicables para objetos esféricos no es aplicable a este caso. Este análisis de Monte Carlo se considera la verdad a la hora de calcular los resultados del algoritmos, dicha comparativa se presenta en la sección 4.4.4. En el caso de satélites que no se pueden considerar esféricos, el uso de un modelo de la geometría del satélite permite descartar eventos que no son colisiones reales o estimar con mayor precisión el riesgo asociado a un evento. El uso de estos algoritmos con geometrías complejas es más relevante para objetos de dimensiones grandes debido a las prestaciones de precisión orbital actuales. En el futuro, si los sistemas de vigilancia mejoran y las órbitas son conocidas con mayor precisión, la importancia de considerar la geometría real de los satélites será cada vez más relevante. La sección 5.4 presenta un ejemplo para un sistema de grandes dimensiones (satélite con un tether). Adicionalmente, si los dos objetos involucrados en la colisión tienen velocidad relativa baja (y geometría simple, Caso C en la Figura 2), la mayor parte de los algoritmos no son aplicables requiriendo implementaciones dedicadas para este caso particular. En esta tesis, uno de estos algoritmos presentado en la literatura [Patera, 2001]R.26 se ha analizado para determinar su idoneidad en distintos tipos de eventos (sección 4.5). La evaluación frete a un análisis de Monte Carlo se proporciona en la sección 4.5.2. Tras este análisis, se ha considerado adecuado para abordar las colisiones de baja velocidad. En particular, se ha concluido que el uso de algoritmos dedicados para baja velocidad son necesarios en función del tamaño del volumen de colisión proyectado en el plano de encuentro (B-plane) y del tamaño de la incertidumbre asociada al vector posición entre los dos objetos. Para incertidumbres grandes, estos algoritmos se hacen más necesarios pues la duración del intervalo en que los elipsoides de error de los dos objetos pueden intersecar es mayor. Dicho algoritmo se ha probado integrando el algoritmo de colisión para objetos con geometrías complejas. El resultado de dicho análisis muestra que este algoritmo puede ser extendido fácilmente para considerar diferentes tipos de algoritmos de cálculo de riesgo de colisión (sección 4.5.3). Ambos algoritmos, junto con el método Monte Carlo para geometrías complejas, se han implementado en la herramienta operacional de la ESA CORAM, que es utilizada para evaluar el riesgo de colisión en las actividades rutinarias de los satélites operados por ESA [Sánchez-Ortiz, 2013a]T.11. Este hecho muestra el interés y relevancia de los algoritmos desarrollados para la mejora de las operaciones de los satélites. Dichos algoritmos han sido presentados en varias conferencias internacionales [Sánchez-Ortiz, 2013b]T.9, [Pulido, 2014]T.7,[Grande-Olalla, 2013]T.10, [Pulido, 2014]T.5, [Sánchez-Ortiz, 2015c]T.1. ABSTRACT This document addresses methodologies for computation of the collision risk of a satellite. Two different approaches need to be considered for collision risk minimisation. On an operational basis, it is needed to perform a sieve of possible objects approaching the satellite, among all objects sharing the space with an operational satellite. As the orbits of both, satellite and the eventual collider, are not perfectly known but only estimated, the miss-encounter geometry and the actual risk of collision shall be evaluated. In the basis of the encounter geometry or the risk, an eventual manoeuvre may be required to avoid the conjunction. Those manoeuvres will be associated to a reduction in the fuel for the mission orbit maintenance, and thus, may reduce the satellite operational lifetime. Thus, avoidance manoeuvre fuel budget shall be estimated, at mission design phase, for a better estimation of mission lifetime, especially for those satellites orbiting in very populated orbital regimes. These two aspects, mission design and operational collision risk aspects, are summarised in Figure 3, and covered along this thesis. Bottom part of the figure identifies the aspects to be consider for the mission design phase (statistical characterisation of the space object population data and theory computing the mean number of events and risk reduction capability) which will define the most appropriate collision avoidance approach at mission operational phase. This part is covered in this work by starting from the theory described in [Sánchez-Ortiz, 2006]T.14 and implemented by this author in ARES tool [Sánchez-Ortiz, 2004b]T.15 provided by ESA for evaluation of collision avoidance approaches. This methodology has been now extended to account for the particular features of the available data sets in operational environment (section 4.3.3). Additionally, the formulation has been extended to allow evaluating risk computation approached when orbital uncertainty is not available (like the TLE case) and when only catastrophic collisions are subject to study (section 4.3.2.3). These improvements to the theory have been included in the new version of ESA ARES tool [Domínguez-González and Sánchez-Ortiz, 2012b]T.12 and available through [SDUP,2014]R.60. At the operation phase, the real catalogue data will be processed on a routine basis, with adequate collision risk computation algorithms to propose conjunction avoidance manoeuvre optimised for every event. The optimisation of manoeuvres in an operational basis is not approached along this document. Currently, American Two Line Element (TLE) catalogue is the only public source of data providing orbits of objects in space to identify eventual conjunction events. Additionally, Conjunction Summary Message (CSM) is provided by Joint Space Operation Center (JSpOC) when the American system identifies a possible collision among satellites and debris. Depending on the data used for collision avoidance evaluation, the conjunction avoidance approach may be different. The main features of currently available data need to be analysed (in regards to accuracy) in order to perform estimation of eventual encounters to be found along the mission lifetime. In the case of TLE, as these data is not provided with accuracy information, operational collision avoidance may be also based on statistical accuracy information as the one used in the mission design approach. This is not the case for CSM data, which includes the state vector and orbital accuracy of the two involved objects. This aspect has been analysed in detail and is depicted in the document, evaluating in statistical way the characteristics of both data sets in regards to the main aspects related to collision avoidance. Once the analysis of data set was completed, investigations on the impact of those features in the most convenient avoidance approaches have been addressed (section 5.1). This analysis is published in a peer-reviewed journal [Sánchez-Ortiz, 2015b]T.3. The analysis provides recommendations for different mission types (satellite size and orbital regime) in regards to the most appropriate collision avoidance approach for relevant risk reduction. The risk reduction capability is very much dependent on the accuracy of the catalogue utilized to identify eventual collisions. Approaches based on CSM data are recommended against the TLE based approach. Some approaches based on the maximum risk associated to envisaged encounters are demonstrated to report a very large number of events, which makes the approach not suitable for operational activities. Accepted Collision Probability Levels are recommended for the definition of the avoidance strategies for different mission types. For example for the case of a LEO satellite in the Sun-synchronous regime, the typically used ACPL value of 10-4 is not a suitable value for collision avoidance schemes based on TLE data. In this case the risk reduction capacity is almost null (due to the large uncertainties associated to TLE data sets, even for short time-to-event values). For significant reduction of risk when using TLE data, ACPL on the order of 10-6 (or lower) seems to be required, producing about 10 warnings per year and mission (if one-day ahead events are considered) or 100 warnings per year (for three-days ahead estimations). Thus, the main conclusion from these results is the lack of feasibility of TLE for a proper collision avoidance approach. On the contrary, for CSM data, and due to the better accuracy of the orbital information when compared with TLE, ACPL on the order of 10-4 allows to significantly reduce the risk. This is true for events estimated up to 3 days ahead. Even 5 days ahead events can be considered, but ACPL values down to 10-5 should be considered in such case. Even larger prediction times can be considered (7 days) for risk reduction about 90%, at the cost of larger number of warnings up to 5 events per year, when 5 days prediction allows to keep the manoeuvre rate in 2 manoeuvres per year. Dynamics of the GEO orbits is different to that in LEO, impacting on a lower increase of orbits uncertainty along time. On the contrary, uncertainties at short prediction times at this orbital regime are larger than those at LEO due to the differences in observation capabilities. Additionally, it has to be accounted that short prediction times feasible at LEO may not be appropriate for a GEO mission due to the orbital period being much larger at this regime. In the case of TLE data sets, significant reduction of risk is only achieved for small ACPL values, producing about a warning event per year if warnings are raised one day in advance to the event (too short for any reaction to be considered). Suitable ACPL values would lay in between 5•10-8 and 10-7, well below the normal values used in current operations for most of the GEO missions (TLE-based strategies for collision avoidance at this regime are not recommended). On the contrary, CSM data allows a good reduction of risk with ACPL in between 10-5 and 10-4 for short and medium prediction times. 10-5 is recommended for prediction times of five or seven days. The number of events raised for a suitable warning time of seven days would be about one in a 10-year mission. It must be noted, that these results are associated to a 2 m radius spacecraft, impact of the satellite size are also analysed within the thesis. In the future, other Space Situational Awareness Systems (SSA, ESA program) may provide additional catalogues of objects in space with the aim of reducing the risk. It is needed to investigate which are the required performances of those catalogues for allowing such risk reduction. The main performance aspects are coverage (objects included in the catalogue, mainly limited by a minimum object size derived from sensor performances) and the accuracy of the orbital data to accurately evaluate the conjunctions (derived from sensor performance in regards to object observation frequency and accuracy). The results of these investigations (section 5.2) are published in a peer-reviewed journal [Sánchez-Ortiz, 2015a]T.2. This aspect was not initially foreseen as objective of the thesis, but it shows how the theory described in the thesis, initially defined for mission design in regards to avoidance manoeuvre fuel allocation (upper part of figure 1), is extended and serves for additional purposes as dimensioning a Space Surveillance and Tracking (SST) system (bottom part of figure below). The main difference between the two approaches is the consideration of the catalogue features as part of the theory which are not modified (for the satellite mission design case) instead of being an input for the analysis (in the case of the SST design). In regards to the outputs, all the features computed by the statistical conjunction analysis are of importance for mission design (with the objective of proper global avoidance strategy definition and fuel allocation), whereas for the case of SST design, the most relevant aspects are the manoeuvre and false alarm rates (defining a reliable system) and the Risk Reduction capability (driving the effectiveness of the system). In regards to the methodology for computing the risk, the SST system shall be driven by the capacity of providing the means to avoid catastrophic conjunction events (avoiding the dramatic increase of the population), whereas the satellite mission design should consider all type of encounters, as the operator is interested on avoiding both lethal and catastrophic collisions. From the analysis of the SST features (object coverage and orbital uncertainty) for a reliable system, it is concluded that those two characteristics are to be imposed differently for the different orbital regimes, as the population level is different depending on the orbit type. Coverage values range from 5 cm for very populated LEO regime up to 100 cm in the case of GEO region. The difference on this requirement derives mainly from the relative velocity of the encounters at those regimes. Regarding the orbital knowledge of the catalogues, very accurate information is required for objects in the LEO region in order to limit the number of false alarms, whereas intermediate orbital accuracy can be considered for higher orbital regimes. In regards to the operational collision avoidance approaches, several collision risk algorithms are used for evaluation of collision risk of two pair of objects. Figure 2 provides a summary of the different collision risk algorithm cases and indicates how they are covered along this document. The typical case with high relative velocity is well covered in literature for the case of spherical objects (case A), with a large number of available algorithms, that are not analysed in detailed in this work. Only a sample case is provided in section 4.2. If complex geometries are considered (Case B), a more realistic risk evaluation can be computed. New approach for the evaluation of risk in the case of complex geometries is presented in this thesis (section 4.4.2), and it has been presented in several international conferences. The developed algorithm allows evaluating the risk for complex objects formed by a set of boxes. A dedicated Monte Carlo method has also been described (section 4.1.2.3) and implemented to allow the evaluation of the actual collisions among a large number of simulation shots. This Monte Carlo runs are considered the truth for comparison of the algorithm results (section 4.4.4). For spacecrafts that cannot be considered as spheres, the consideration of the real geometry of the objects may allow to discard events which are not real conjunctions, or estimate with larger reliability the risk associated to the event. This is of particular importance for the case of large spacecrafts as the uncertainty in positions of actual catalogues does not reach small values to make a difference for the case of objects below meter size. As the tracking systems improve and the orbits of catalogued objects are known more precisely, the importance of considering actual shapes of the objects will become more relevant. The particular case of a very large system (as a tethered satellite) is analysed in section 5.4. Additionally, if the two colliding objects have low relative velocity (and simple geometries, case C in figure above), the most common collision risk algorithms fail and adequate theories need to be applied. In this document, a low relative velocity algorithm presented in the literature [Patera, 2001]R.26 is described and evaluated (section 4.5). Evaluation through comparison with Monte Carlo approach is provided in section 4.5.2. The main conclusion of this analysis is the suitability of this algorithm for the most common encounter characteristics, and thus it is selected as adequate for collision risk estimation. Its performances are evaluated in order to characterise when it can be safely used for a large variety of encounter characteristics. In particular, it is found that the need of using dedicated algorithms depend on both the size of collision volume in the B-plane and the miss-distance uncertainty. For large uncertainties, the need of such algorithms is more relevant since for small uncertainties the encounter duration where the covariance ellipsoids intersect is smaller. Additionally, its application for the case of complex satellite geometries is assessed (case D in figure above) by integrating the developed algorithm in this thesis with Patera’s formulation for low relative velocity encounters. The results of this analysis show that the algorithm can be easily extended for collision risk estimation process suitable for complex geometry objects (section 4.5.3). The two algorithms, together with the Monte Carlo method, have been implemented in the operational tool CORAM for ESA which is used for the evaluation of collision risk of ESA operated missions, [Sánchez-Ortiz, 2013a]T.11. This fact shows the interest and relevance of the developed algorithms for improvement of satellite operations. The algorithms have been presented in several international conferences, [Sánchez-Ortiz, 2013b]T.9, [Pulido, 2014]T.7,[Grande-Olalla, 2013]T.10, [Pulido, 2014]T.5, [Sánchez-Ortiz, 2015c]T.1.
Resumo:
Los sistemas empotrados han sido concebidos tradicionalmente como sistemas de procesamiento específicos que realizan una tarea fija durante toda su vida útil. Para cumplir con requisitos estrictos de coste, tamaño y peso, el equipo de diseño debe optimizar su funcionamiento para condiciones muy específicas. Sin embargo, la demanda de mayor versatilidad, un funcionamiento más inteligente y, en definitiva, una mayor capacidad de procesamiento comenzaron a chocar con estas limitaciones, agravado por la incertidumbre asociada a entornos de operación cada vez más dinámicos donde comenzaban a ser desplegados progresivamente. Esto trajo como resultado una necesidad creciente de que los sistemas pudieran responder por si solos a eventos inesperados en tiempo diseño tales como: cambios en las características de los datos de entrada y el entorno del sistema en general; cambios en la propia plataforma de cómputo, por ejemplo debido a fallos o defectos de fabricación; y cambios en las propias especificaciones funcionales causados por unos objetivos del sistema dinámicos y cambiantes. Como consecuencia, la complejidad del sistema aumenta, pero a cambio se habilita progresivamente una capacidad de adaptación autónoma sin intervención humana a lo largo de la vida útil, permitiendo que tomen sus propias decisiones en tiempo de ejecución. Éstos sistemas se conocen, en general, como sistemas auto-adaptativos y tienen, entre otras características, las de auto-configuración, auto-optimización y auto-reparación. Típicamente, la parte soft de un sistema es mayoritariamente la única utilizada para proporcionar algunas capacidades de adaptación a un sistema. Sin embargo, la proporción rendimiento/potencia en dispositivos software como microprocesadores en muchas ocasiones no es adecuada para sistemas empotrados. En este escenario, el aumento resultante en la complejidad de las aplicaciones está siendo abordado parcialmente mediante un aumento en la complejidad de los dispositivos en forma de multi/many-cores; pero desafortunadamente, esto hace que el consumo de potencia también aumente. Además, la mejora en metodologías de diseño no ha sido acorde como para poder utilizar toda la capacidad de cómputo disponible proporcionada por los núcleos. Por todo ello, no se están satisfaciendo adecuadamente las demandas de cómputo que imponen las nuevas aplicaciones. La solución tradicional para mejorar la proporción rendimiento/potencia ha sido el cambio a unas especificaciones hardware, principalmente usando ASICs. Sin embargo, los costes de un ASIC son altamente prohibitivos excepto en algunos casos de producción en masa y además la naturaleza estática de su estructura complica la solución a las necesidades de adaptación. Los avances en tecnologías de fabricación han hecho que la FPGA, una vez lenta y pequeña, usada como glue logic en sistemas mayores, haya crecido hasta convertirse en un dispositivo de cómputo reconfigurable de gran potencia, con una cantidad enorme de recursos lógicos computacionales y cores hardware empotrados de procesamiento de señal y de propósito general. Sus capacidades de reconfiguración han permitido combinar la flexibilidad propia del software con el rendimiento del procesamiento en hardware, lo que tiene la potencialidad de provocar un cambio de paradigma en arquitectura de computadores, pues el hardware no puede ya ser considerado más como estático. El motivo es que como en el caso de las FPGAs basadas en tecnología SRAM, la reconfiguración parcial dinámica (DPR, Dynamic Partial Reconfiguration) es posible. Esto significa que se puede modificar (reconfigurar) un subconjunto de los recursos computacionales en tiempo de ejecución mientras el resto permanecen activos. Además, este proceso de reconfiguración puede ser ejecutado internamente por el propio dispositivo. El avance tecnológico en dispositivos hardware reconfigurables se encuentra recogido bajo el campo conocido como Computación Reconfigurable (RC, Reconfigurable Computing). Uno de los campos de aplicación más exóticos y menos convencionales que ha posibilitado la computación reconfigurable es el conocido como Hardware Evolutivo (EHW, Evolvable Hardware), en el cual se encuentra enmarcada esta tesis. La idea principal del concepto consiste en convertir hardware que es adaptable a través de reconfiguración en una entidad evolutiva sujeta a las fuerzas de un proceso evolutivo inspirado en el de las especies biológicas naturales, que guía la dirección del cambio. Es una aplicación más del campo de la Computación Evolutiva (EC, Evolutionary Computation), que comprende una serie de algoritmos de optimización global conocidos como Algoritmos Evolutivos (EA, Evolutionary Algorithms), y que son considerados como algoritmos universales de resolución de problemas. En analogía al proceso biológico de la evolución, en el hardware evolutivo el sujeto de la evolución es una población de circuitos que intenta adaptarse a su entorno mediante una adecuación progresiva generación tras generación. Los individuos pasan a ser configuraciones de circuitos en forma de bitstreams caracterizados por descripciones de circuitos reconfigurables. Seleccionando aquellos que se comportan mejor, es decir, que tienen una mejor adecuación (o fitness) después de ser evaluados, y usándolos como padres de la siguiente generación, el algoritmo evolutivo crea una nueva población hija usando operadores genéticos como la mutación y la recombinación. Según se van sucediendo generaciones, se espera que la población en conjunto se aproxime a la solución óptima al problema de encontrar una configuración del circuito adecuada que satisfaga las especificaciones. El estado de la tecnología de reconfiguración después de que la familia de FPGAs XC6200 de Xilinx fuera retirada y reemplazada por las familias Virtex a finales de los 90, supuso un gran obstáculo para el avance en hardware evolutivo; formatos de bitstream cerrados (no conocidos públicamente); dependencia de herramientas del fabricante con soporte limitado de DPR; una velocidad de reconfiguración lenta; y el hecho de que modificaciones aleatorias del bitstream pudieran resultar peligrosas para la integridad del dispositivo, son algunas de estas razones. Sin embargo, una propuesta a principios de los años 2000 permitió mantener la investigación en el campo mientras la tecnología de DPR continuaba madurando, el Circuito Virtual Reconfigurable (VRC, Virtual Reconfigurable Circuit). En esencia, un VRC en una FPGA es una capa virtual que actúa como un circuito reconfigurable de aplicación específica sobre la estructura nativa de la FPGA que reduce la complejidad del proceso reconfiguración y aumenta su velocidad (comparada con la reconfiguración nativa). Es un array de nodos computacionales especificados usando descripciones HDL estándar que define recursos reconfigurables ad-hoc: multiplexores de rutado y un conjunto de elementos de procesamiento configurables, cada uno de los cuales tiene implementadas todas las funciones requeridas, que pueden seleccionarse a través de multiplexores tal y como ocurre en una ALU de un microprocesador. Un registro grande actúa como memoria de configuración, por lo que la reconfiguración del VRC es muy rápida ya que tan sólo implica la escritura de este registro, el cual controla las señales de selección del conjunto de multiplexores. Sin embargo, esta capa virtual provoca: un incremento de área debido a la implementación simultánea de cada función en cada nodo del array más los multiplexores y un aumento del retardo debido a los multiplexores, reduciendo la frecuencia de funcionamiento máxima. La naturaleza del hardware evolutivo, capaz de optimizar su propio comportamiento computacional, le convierten en un buen candidato para avanzar en la investigación sobre sistemas auto-adaptativos. Combinar un sustrato de cómputo auto-reconfigurable capaz de ser modificado dinámicamente en tiempo de ejecución con un algoritmo empotrado que proporcione una dirección de cambio, puede ayudar a satisfacer los requisitos de adaptación autónoma de sistemas empotrados basados en FPGA. La propuesta principal de esta tesis está por tanto dirigida a contribuir a la auto-adaptación del hardware de procesamiento de sistemas empotrados basados en FPGA mediante hardware evolutivo. Esto se ha abordado considerando que el comportamiento computacional de un sistema puede ser modificado cambiando cualquiera de sus dos partes constitutivas: una estructura hard subyacente y un conjunto de parámetros soft. De esta distinción, se derivan dos lineas de trabajo. Por un lado, auto-adaptación paramétrica, y por otro auto-adaptación estructural. El objetivo perseguido en el caso de la auto-adaptación paramétrica es la implementación de técnicas de optimización evolutiva complejas en sistemas empotrados con recursos limitados para la adaptación paramétrica online de circuitos de procesamiento de señal. La aplicación seleccionada como prueba de concepto es la optimización para tipos muy específicos de imágenes de los coeficientes de los filtros de transformadas wavelet discretas (DWT, DiscreteWavelet Transform), orientada a la compresión de imágenes. Por tanto, el objetivo requerido de la evolución es una compresión adaptativa y más eficiente comparada con los procedimientos estándar. El principal reto radica en reducir la necesidad de recursos de supercomputación para el proceso de optimización propuesto en trabajos previos, de modo que se adecúe para la ejecución en sistemas empotrados. En cuanto a la auto-adaptación estructural, el objetivo de la tesis es la implementación de circuitos auto-adaptativos en sistemas evolutivos basados en FPGA mediante un uso eficiente de sus capacidades de reconfiguración nativas. En este caso, la prueba de concepto es la evolución de tareas de procesamiento de imagen tales como el filtrado de tipos desconocidos y cambiantes de ruido y la detección de bordes en la imagen. En general, el objetivo es la evolución en tiempo de ejecución de tareas de procesamiento de imagen desconocidas en tiempo de diseño (dentro de un cierto grado de complejidad). En este caso, el objetivo de la propuesta es la incorporación de DPR en EHW para evolucionar la arquitectura de un array sistólico adaptable mediante reconfiguración cuya capacidad de evolución no había sido estudiada previamente. Para conseguir los dos objetivos mencionados, esta tesis propone originalmente una plataforma evolutiva que integra un motor de adaptación (AE, Adaptation Engine), un motor de reconfiguración (RE, Reconfiguration Engine) y un motor computacional (CE, Computing Engine) adaptable. El el caso de adaptación paramétrica, la plataforma propuesta está caracterizada por: • un CE caracterizado por un núcleo de procesamiento hardware de DWT adaptable mediante registros reconfigurables que contienen los coeficientes de los filtros wavelet • un algoritmo evolutivo como AE que busca filtros wavelet candidatos a través de un proceso de optimización paramétrica desarrollado específicamente para sistemas caracterizados por recursos de procesamiento limitados • un nuevo operador de mutación simplificado para el algoritmo evolutivo utilizado, que junto con un mecanismo de evaluación rápida de filtros wavelet candidatos derivado de la literatura actual, asegura la viabilidad de la búsqueda evolutiva asociada a la adaptación de wavelets. En el caso de adaptación estructural, la plataforma propuesta toma la forma de: • un CE basado en una plantilla de array sistólico reconfigurable de 2 dimensiones compuesto de nodos de procesamiento reconfigurables • un algoritmo evolutivo como AE que busca configuraciones candidatas del array usando un conjunto de funcionalidades de procesamiento para los nodos disponible en una biblioteca accesible en tiempo de ejecución • un RE hardware que explota la capacidad de reconfiguración nativa de las FPGAs haciendo un uso eficiente de los recursos reconfigurables del dispositivo para cambiar el comportamiento del CE en tiempo de ejecución • una biblioteca de elementos de procesamiento reconfigurables caracterizada por bitstreams parciales independientes de la posición, usados como el conjunto de configuraciones disponibles para los nodos de procesamiento del array Las contribuciones principales de esta tesis se pueden resumir en la siguiente lista: • Una plataforma evolutiva basada en FPGA para la auto-adaptación paramétrica y estructural de sistemas empotrados compuesta por un motor computacional (CE), un motor de adaptación (AE) evolutivo y un motor de reconfiguración (RE). Esta plataforma se ha desarrollado y particularizado para los casos de auto-adaptación paramétrica y estructural. • En cuanto a la auto-adaptación paramétrica, las contribuciones principales son: – Un motor computacional adaptable mediante registros que permite la adaptación paramétrica de los coeficientes de una implementación hardware adaptativa de un núcleo de DWT. – Un motor de adaptación basado en un algoritmo evolutivo desarrollado específicamente para optimización numérica, aplicada a los coeficientes de filtros wavelet en sistemas empotrados con recursos limitados. – Un núcleo IP de DWT auto-adaptativo en tiempo de ejecución para sistemas empotrados que permite la optimización online del rendimiento de la transformada para compresión de imágenes en entornos específicos de despliegue, caracterizados por tipos diferentes de señal de entrada. – Un modelo software y una implementación hardware de una herramienta para la construcción evolutiva automática de transformadas wavelet específicas. • Por último, en cuanto a la auto-adaptación estructural, las contribuciones principales son: – Un motor computacional adaptable mediante reconfiguración nativa de FPGAs caracterizado por una plantilla de array sistólico en dos dimensiones de nodos de procesamiento reconfigurables. Es posible mapear diferentes tareas de cómputo en el array usando una biblioteca de elementos sencillos de procesamiento reconfigurables. – Definición de una biblioteca de elementos de procesamiento apropiada para la síntesis autónoma en tiempo de ejecución de diferentes tareas de procesamiento de imagen. – Incorporación eficiente de la reconfiguración parcial dinámica (DPR) en sistemas de hardware evolutivo, superando los principales inconvenientes de propuestas previas como los circuitos reconfigurables virtuales (VRCs). En este trabajo también se comparan originalmente los detalles de implementación de ambas propuestas. – Una plataforma tolerante a fallos, auto-curativa, que permite la recuperación funcional online en entornos peligrosos. La plataforma ha sido caracterizada desde una perspectiva de tolerancia a fallos: se proponen modelos de fallo a nivel de CLB y de elemento de procesamiento, y usando el motor de reconfiguración, se hace un análisis sistemático de fallos para un fallo en cada elemento de procesamiento y para dos fallos acumulados. – Una plataforma con calidad de filtrado dinámica que permite la adaptación online a tipos de ruido diferentes y diferentes comportamientos computacionales teniendo en cuenta los recursos de procesamiento disponibles. Por un lado, se evolucionan filtros con comportamientos no destructivos, que permiten esquemas de filtrado en cascada escalables; y por otro, también se evolucionan filtros escalables teniendo en cuenta requisitos computacionales de filtrado cambiantes dinámicamente. Este documento está organizado en cuatro partes y nueve capítulos. La primera parte contiene el capítulo 1, una introducción y motivación sobre este trabajo de tesis. A continuación, el marco de referencia en el que se enmarca esta tesis se analiza en la segunda parte: el capítulo 2 contiene una introducción a los conceptos de auto-adaptación y computación autonómica (autonomic computing) como un campo de investigación más general que el muy específico de este trabajo; el capítulo 3 introduce la computación evolutiva como la técnica para dirigir la adaptación; el capítulo 4 analiza las plataformas de computación reconfigurables como la tecnología para albergar hardware auto-adaptativo; y finalmente, el capítulo 5 define, clasifica y hace un sondeo del campo del hardware evolutivo. Seguidamente, la tercera parte de este trabajo contiene la propuesta, desarrollo y resultados obtenidos: mientras que el capítulo 6 contiene una declaración de los objetivos de la tesis y la descripción de la propuesta en su conjunto, los capítulos 7 y 8 abordan la auto-adaptación paramétrica y estructural, respectivamente. Finalmente, el capítulo 9 de la parte 4 concluye el trabajo y describe caminos de investigación futuros. ABSTRACT Embedded systems have traditionally been conceived to be specific-purpose computers with one, fixed computational task for their whole lifetime. Stringent requirements in terms of cost, size and weight forced designers to highly optimise their operation for very specific conditions. However, demands for versatility, more intelligent behaviour and, in summary, an increased computing capability began to clash with these limitations, intensified by the uncertainty associated to the more dynamic operating environments where they were progressively being deployed. This brought as a result an increasing need for systems to respond by themselves to unexpected events at design time, such as: changes in input data characteristics and system environment in general; changes in the computing platform itself, e.g., due to faults and fabrication defects; and changes in functional specifications caused by dynamically changing system objectives. As a consequence, systems complexity is increasing, but in turn, autonomous lifetime adaptation without human intervention is being progressively enabled, allowing them to take their own decisions at run-time. This type of systems is known, in general, as selfadaptive, and are able, among others, of self-configuration, self-optimisation and self-repair. Traditionally, the soft part of a system has mostly been so far the only place to provide systems with some degree of adaptation capabilities. However, the performance to power ratios of software driven devices like microprocessors are not adequate for embedded systems in many situations. In this scenario, the resulting rise in applications complexity is being partly addressed by rising devices complexity in the form of multi and many core devices; but sadly, this keeps on increasing power consumption. Besides, design methodologies have not been improved accordingly to completely leverage the available computational power from all these cores. Altogether, these factors make that the computing demands new applications pose are not being wholly satisfied. The traditional solution to improve performance to power ratios has been the switch to hardware driven specifications, mainly using ASICs. However, their costs are highly prohibitive except for some mass production cases and besidesthe static nature of its structure complicates the solution to the adaptation needs. The advancements in fabrication technologies have made that the once slow, small FPGA used as glue logic in bigger systems, had grown to be a very powerful, reconfigurable computing device with a vast amount of computational logic resources and embedded, hardened signal and general purpose processing cores. Its reconfiguration capabilities have enabled software-like flexibility to be combined with hardware-like computing performance, which has the potential to cause a paradigm shift in computer architecture since hardware cannot be considered as static anymore. This is so, since, as is the case with SRAMbased FPGAs, Dynamic Partial Reconfiguration (DPR) is possible. This means that subsets of the FPGA computational resources can now be changed (reconfigured) at run-time while the rest remains active. Besides, this reconfiguration process can be triggered internally by the device itself. This technological boost in reconfigurable hardware devices is actually covered under the field known as Reconfigurable Computing. One of the most exotic fields of application that Reconfigurable Computing has enabled is the known as Evolvable Hardware (EHW), in which this dissertation is framed. The main idea behind the concept is turning hardware that is adaptable through reconfiguration into an evolvable entity subject to the forces of an evolutionary process, inspired by that of natural, biological species, that guides the direction of change. It is yet another application of the field of Evolutionary Computation (EC), which comprises a set of global optimisation algorithms known as Evolutionary Algorithms (EAs), considered as universal problem solvers. In analogy to the biological process of evolution, in EHW the subject of evolution is a population of circuits that tries to get adapted to its surrounding environment by progressively getting better fitted to it generation after generation. Individuals become circuit configurations representing bitstreams that feature reconfigurable circuit descriptions. By selecting those that behave better, i.e., with a higher fitness value after being evaluated, and using them as parents of the following generation, the EA creates a new offspring population by using so called genetic operators like mutation and recombination. As generations succeed one another, the whole population is expected to approach to the optimum solution to the problem of finding an adequate circuit configuration that fulfils system objectives. The state of reconfiguration technology after Xilinx XC6200 FPGA family was discontinued and replaced by Virtex families in the late 90s, was a major obstacle for advancements in EHW; closed (non publicly known) bitstream formats; dependence on manufacturer tools with highly limiting support of DPR; slow speed of reconfiguration; and random bitstream modifications being potentially hazardous for device integrity, are some of these reasons. However, a proposal in the first 2000s allowed to keep investigating in this field while DPR technology kept maturing, the Virtual Reconfigurable Circuit (VRC). In essence, a VRC in an FPGA is a virtual layer acting as an application specific reconfigurable circuit on top of an FPGA fabric that reduces the complexity of the reconfiguration process and increases its speed (compared to native reconfiguration). It is an array of computational nodes specified using standard HDL descriptions that define ad-hoc reconfigurable resources; routing multiplexers and a set of configurable processing elements, each one containing all the required functions, which are selectable through functionality multiplexers as in microprocessor ALUs. A large register acts as configuration memory, so VRC reconfiguration is very fast given it only involves writing this register, which drives the selection signals of the set of multiplexers. However, large overheads are introduced by this virtual layer; an area overhead due to the simultaneous implementation of every function in every node of the array plus the multiplexers, and a delay overhead due to the multiplexers, which also reduces maximum frequency of operation. The very nature of Evolvable Hardware, able to optimise its own computational behaviour, makes it a good candidate to advance research in self-adaptive systems. Combining a selfreconfigurable computing substrate able to be dynamically changed at run-time with an embedded algorithm that provides a direction for change, can help fulfilling requirements for autonomous lifetime adaptation of FPGA-based embedded systems. The main proposal of this thesis is hence directed to contribute to autonomous self-adaptation of the underlying computational hardware of FPGA-based embedded systems by means of Evolvable Hardware. This is tackled by considering that the computational behaviour of a system can be modified by changing any of its two constituent parts: an underlying hard structure and a set of soft parameters. Two main lines of work derive from this distinction. On one side, parametric self-adaptation and, on the other side, structural self-adaptation. The goal pursued in the case of parametric self-adaptation is the implementation of complex evolutionary optimisation techniques in resource constrained embedded systems for online parameter adaptation of signal processing circuits. The application selected as proof of concept is the optimisation of Discrete Wavelet Transforms (DWT) filters coefficients for very specific types of images, oriented to image compression. Hence, adaptive and improved compression efficiency, as compared to standard techniques, is the required goal of evolution. The main quest lies in reducing the supercomputing resources reported in previous works for the optimisation process in order to make it suitable for embedded systems. Regarding structural self-adaptation, the thesis goal is the implementation of self-adaptive circuits in FPGA-based evolvable systems through an efficient use of native reconfiguration capabilities. In this case, evolution of image processing tasks such as filtering of unknown and changing types of noise and edge detection are the selected proofs of concept. In general, evolving unknown image processing behaviours (within a certain complexity range) at design time is the required goal. In this case, the mission of the proposal is the incorporation of DPR in EHW to evolve a systolic array architecture adaptable through reconfiguration whose evolvability had not been previously checked. In order to achieve the two stated goals, this thesis originally proposes an evolvable platform that integrates an Adaptation Engine (AE), a Reconfiguration Engine (RE) and an adaptable Computing Engine (CE). In the case of parametric adaptation, the proposed platform is characterised by: • a CE featuring a DWT hardware processing core adaptable through reconfigurable registers that holds wavelet filters coefficients • an evolutionary algorithm as AE that searches for candidate wavelet filters through a parametric optimisation process specifically developed for systems featured by scarce computing resources • a new, simplified mutation operator for the selected EA, that together with a fast evaluation mechanism of candidate wavelet filters derived from existing literature, assures the feasibility of the evolutionary search involved in wavelets adaptation In the case of structural adaptation, the platform proposal takes the form of: • a CE based on a reconfigurable 2D systolic array template composed of reconfigurable processing nodes • an evolutionary algorithm as AE that searches for candidate configurations of the array using a set of computational functionalities for the nodes available in a run time accessible library • a hardware RE that exploits native DPR capabilities of FPGAs and makes an efficient use of the available reconfigurable resources of the device to change the behaviour of the CE at run time • a library of reconfigurable processing elements featured by position-independent partial bitstreams used as the set of available configurations for the processing nodes of the array Main contributions of this thesis can be summarised in the following list. • An FPGA-based evolvable platform for parametric and structural self-adaptation of embedded systems composed of a Computing Engine, an evolutionary Adaptation Engine and a Reconfiguration Engine. This platform is further developed and tailored for both parametric and structural self-adaptation. • Regarding parametric self-adaptation, main contributions are: – A CE adaptable through reconfigurable registers that enables parametric adaptation of the coefficients of an adaptive hardware implementation of a DWT core. – An AE based on an Evolutionary Algorithm specifically developed for numerical optimisation applied to wavelet filter coefficients in resource constrained embedded systems. – A run-time self-adaptive DWT IP core for embedded systems that allows for online optimisation of transform performance for image compression for specific deployment environments characterised by different types of input signals. – A software model and hardware implementation of a tool for the automatic, evolutionary construction of custom wavelet transforms. • Lastly, regarding structural self-adaptation, main contributions are: – A CE adaptable through native FPGA fabric reconfiguration featured by a two dimensional systolic array template of reconfigurable processing nodes. Different processing behaviours can be automatically mapped in the array by using a library of simple reconfigurable processing elements. – Definition of a library of such processing elements suited for autonomous runtime synthesis of different image processing tasks. – Efficient incorporation of DPR in EHW systems, overcoming main drawbacks from the previous approach of virtual reconfigurable circuits. Implementation details for both approaches are also originally compared in this work. – A fault tolerant, self-healing platform that enables online functional recovery in hazardous environments. The platform has been characterised from a fault tolerance perspective: fault models at FPGA CLB level and processing elements level are proposed, and using the RE, a systematic fault analysis for one fault in every processing element and for two accumulated faults is done. – A dynamic filtering quality platform that permits on-line adaptation to different types of noise and different computing behaviours considering the available computing resources. On one side, non-destructive filters are evolved, enabling scalable cascaded filtering schemes; and on the other, size-scalable filters are also evolved considering dynamically changing computational filtering requirements. This dissertation is organized in four parts and nine chapters. First part contains chapter 1, the introduction to and motivation of this PhD work. Following, the reference framework in which this dissertation is framed is analysed in the second part: chapter 2 features an introduction to the notions of self-adaptation and autonomic computing as a more general research field to the very specific one of this work; chapter 3 introduces evolutionary computation as the technique to drive adaptation; chapter 4 analyses platforms for reconfigurable computing as the technology to hold self-adaptive hardware; and finally chapter 5 defines, classifies and surveys the field of Evolvable Hardware. Third part of the work follows, which contains the proposal, development and results obtained: while chapter 6 contains an statement of the thesis goals and the description of the proposal as a whole, chapters 7 and 8 address parametric and structural self-adaptation, respectively. Finally, chapter 9 in part 4 concludes the work and describes future research paths.