32 resultados para PRBS signal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this paper is to provide performance metrics for small-signal stability assessment of a given system architecture. The stability margins are stated utilizing a concept of maximum peak criteria (MPC) derived from the behavior of an impedance-based sensitivity function. For each minor-loop gain defined at every system interface, a single number to state the robustness of stability is provided based on the computed maximum value of the corresponding sensitivity function. In order to compare various power-architecture solutions in terms of stability, a parameter providing an overall measure of the whole system stability is required. The selected figure of merit is geometric average of each maximum peak value within the system. It provides a meaningful metrics for system comparisons: the best system in terms of robust stability is the one that minimizes this index. In addition, the largest peak value within the system interfaces is given thus detecting the weakest point of the system in terms of robustness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The optimization of power architectures is a complex problem due to the plethora of different ways to connect various system components. This issue has been addressed by developing a methodology to design and optimize power architectures in terms of the most fundamental system features: size, cost and efficiency. The process assumes various simplifications regarding the utilized DC/DC converter models in order to prevent the simulation time to become excessive and, therefore, stability is not considered. The objective of this paper is to present a simplified method to analyze small-signal stability of a system in order to integrate it into the optimization methodology. A black-box modeling approach, applicable to commercial converters with unknown topology and components, is based on frequency response measurements enabling the system small-signal stability assessment. The applicability of passivity-based stability criterion is assessed. The stability margins are stated utilizing a concept of maximum peak criteria derived from the behavior of the impedance-based sensitivity function that provides a single number to state the robustness of the stability of a well-defined minor-loop gain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to determine the capability of ceMRI based signal intensity (SI) mapping to predict appropriate ICD therapies after PVTSA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report microwave signal generation using a 1550 nm single-mode VCSEL subject to two-frequency optical injection. Double injection locking is achieved. It is found that this generation system is independent of the master lasers polarization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this paper is to present a simplified method to analyze small-signal stability of a power system and provide performance metrics for stability assessment of a given power-system-architecture. The stability margins are stated utilizing a concept of maximum peak criteria (MPC), derived from the behavior of an impedance-based sensitivity function that provides a single number to state the robustness of the stability of a well-defined minor-loop gain. For each minor-loop gain, defined at every system interface, the robustness of the stability is provided as a maximum value of the corresponding sensitivity function. Typically power systems comprise of various interfaces and, therefore, in order to compare different architecture solutions in terms of stability, a single number providing an overall measure of the whole system stability is required. The selected figure of merit is geometric average of each maximum peak value within the system, combined with the worst case value of system interfaces.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Understanding the radio signal transmission characteristics in the environment where the telerobotic application is sought is a key part of achieving a reliable wireless communication link between a telerobot and a control station. In this paper, wireless communication requirements and a case study of a typical telerobotic application in an underground facility at CERN are presented. Then, the theoretical and experimental characteristics of radio propagation are investigated with respect to time, distance, location and surrounding objects. Based on analysis of the experimental findings, we show how a commercial wireless system, such as Wi-Fi, can be made suitable for a case study application at CERN.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wireless teleoperation of field robots for maintenance, inspection and rescue missions is often performed in environments with low wireless connectivity, caused by signal losses from the environment and distance from the wireless transmitters. Various studies from the literature have addressed these problems with time-delay robust control systems and multi-hop wireless relay networks. However, such approaches do not solve the issue of how to present wireless data to the operator to avoid losing control of the robot. Despite the fact that teleoperation for maintenance often already involves haptic devices, no studies look at the possibility of using this existing feedback to aid operators in navigating within areas of variable wireless connectivity. We propose a method to incorporate haptic information into the velocity control of an omnidirectional robot to augment the operators perception of wireless signal strength in the remote environment. In this paper we introduce a mapping between wireless signal strength from multiple receivers to the force feedback of a 6 Degree of Freedom haptic master and evaluate the proposed approach using experimental data and randomly generated wireless maps

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes a method for the identification of different partial discharges (PDs) sources through the analysis of a collection of PD signals acquired with a PD measurement system. This method, robust and sensitive enough to cope with noisy data and external interferences, combines the characterization of each signal from the collection, with a clustering procedure, the CLARA algorithm. Several features are proposed for the characterization of the signals, being the wavelet variances, the frequency estimated with the Prony method, and the energy, the most relevant for the performance of the clustering procedure. The result of the unsupervised classification is a set of clusters each containing those signals which are more similar to each other than to those in other clusters. The analysis of the classification results permits both the identification of different PD sources and the discrimination between original PD signals, reflections, noise and external interferences. The methods and graphical tools detailed in this paper have been coded and published as a contributed package of the R environment under a GNU/GPL license.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The analysis of the interference modes has an increasing application, especially in the field of optical biosensors. In this type of sensors, the displacement Δν of the interference modes of the transduction signal is observed when a particular biological agent is placed over the biosensor. In order to measure this displacement, the position of a maximum (or a minimum) of the signal must be detected before and after placing the agent over the sensor. A parameter of great importance for this kind of sensors is the period Pν of the signal, which is inversely proportional to the optical thickness h0 of the sensor in the absence of the biological agent. The increase of this period improves the sensitivity of the sensor but it worsens the detection of the maximum. In this paper, authors analyze the propagation of uncertainties in these sensors when using least squares techniques for the detection of the maxima (or minima) of the signal. Techniques described in supplement 2 of the ISO-GUM Guide are used. The result of the analysis allows a metrological educated answer to the question of which is the optimal period Pν of the signal. El análisis del comportamiento de los modos de interferencia tiene una aplicación cada vez más amplia, especialmente en el campo de los biosensores ópticos. En este tipo de sensores se observa el desplazamiento Δν de los modos de interferencia de la señal de transducción al reconocer un de-terminado agente biológico. Para medir ese desplazamiento se debe detectar la posición de un máximo o mínimo de la señal antes y después de dicho desplazamiento. En este tipo de biosensores un parámetro de gran importancia es el periodo Pν de la señal el cual es inversamente proporcional al espesor óptico h0 del sensor en ausencia de agente biológico. El aumento de dicho periodo mejora la sensibilidad del sensor pero parece dificultar la detección del mínimo o máximo. Por tanto, su efecto sobre la incertidumbre del resultado de la medida presenta dos efectos contrapuestos: la mejora de la sensibilidad frente a la dificultad creciente en la detección del mínimo ó máximo. En este trabajo, los autores analizan la propagación de incertidumbres en estos sensores utilizando herramientas de ajuste por MM.CC. para la detección de los mínimos o máximos de la señal y técnicas de propagación de incertidumbres descritas en el suplemento 2 de la Guía ISO-GUM. El resultado del análisis permite dar una respuesta, justificada desde el punto de vista metrológico, de en que condiciones es conveniente o no aumentar el periodo Pν de la señal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Differential Phase Shift Keying (DPSK) modulation format has been shown as a robust solution for next-generation optical transmission systems. One key device enabling such systems is the delay interferometer, converting the signal phase information into intensity modulation to be detected by the photodiodes. Usually, Mach-Zehnder interferometer (MZI) is used for demodulating DPSK signals. In this paper, we developed an MZI which is based on all-fiber Multimode Interference (MI) structure: a multimode fiber (MMF) located between two single-mode fibers (SMF) without any transition zones. The standard MZI is not very stable since the two beams go through two different paths before they recombine. In our design the two arms of the MZI are in the same fiber, which will make it less temperature-sensitive than the standard MZI. Performance of such MZI will be analyzed from transmission spectrum. Finally such all-fiber MI-based MZI (MI-MZI) is used to demodulate 10 Gbps DPSK signals. The demodulated signals are analyzed from eye diagram and bit error rate (BER).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the growing body of research on traumatic brain injury and spinal cord injury, computational neuroscience has recently focused its modeling efforts on neuronal functional deficits following mechanical loading. However, in most of these efforts, cell damage is generally only characterized by purely mechanistic criteria, function of quantities such as stress, strain or their corresponding rates. The modeling of functional deficits in neurites as a consequence of macroscopic mechanical insults has been rarely explored. In particular, a quantitative mechanically based model of electrophysiological impairment in neuronal cells has only very recently been proposed (Jerusalem et al., 2013). In this paper, we present the implementation details of Neurite: the finite difference parallel program used in this reference. Following the application of a macroscopic strain at a given strain rate produced by a mechanical insult, Neurite is able to simulate the resulting neuronal electrical signal propagation, and thus the corresponding functional deficits. The simulation of the coupled mechanical and electrophysiological behaviors requires computational expensive calculations that increase in complexity as the network of the simulated cells grows. The solvers implemented in Neurite-explicit and implicit-were therefore parallelized using graphics processing units in order to reduce the burden of the simulation costs of large scale scenarios. Cable Theory and Hodgkin-Huxley models were implemented to account for the electrophysiological passive and active regions of a neurite, respectively, whereas a coupled mechanical model accounting for the neurite mechanical behavior within its surrounding medium was adopted as a link between lectrophysiology and mechanics (Jerusalem et al., 2013). This paper provides the details of the parallel implementation of Neurite, along with three different application examples: a long myelinated axon, a segmented dendritic tree, and a damaged axon. The capabilities of the program to deal with large scale scenarios, segmented neuronal structures, and functional deficits under mechanical loading are specifically highlighted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose and demonstrate a low-cost alternative scheme of direct-detection to detect a 100Gbps polarization-multiplexed differential quadrature phase-shift keying (PM-DQPSK) signal. The proposed scheme is based on a delay line and a polarization rotator; the phase-shift keying signal is first converted into a polarization shift keying signal. Then, this signal is converted into an intensity modulated signal by a polarization beam splitter. Finally, the intensity-modulated signal is detected by balanced photodetectors. In order to demonstrate that our proposed receiver is suitable for using as a PM-DQPSK demodulator, a set of simulations have been performed. In addition to testing the sensitivity, the performance under various impairments, including narrow optical filtering, polarization mode dispersion, chromatic dispersion and polarization sensitivity, is analyzed. The simulation results show that our performance receiver is as good as a conventional receiver based on four delay interferometers. Moreover, in comparison with the typical receiver, fewer components are used in our receiver. Hence, implementation is easier, and total cost is reduced. In addition, our receiver can be easily improved to a bit-rate tunable receiver.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Optical filters are crucial elements in optical communications. The influence of cascaded filters in the optical signal will affect the communications quality seriously. In this paper we will study and simulate the optical signal impairment caused by different kinds of filters which include Butterworth, Bessel, Fiber Bragg Grating (FBG) and Fabry-Perot (FP). Optical signal impairment is analyzed from an Eye Opening Penalty (EOP) and optical spectrum point of view. The simulation results show that when the center frequency of all filters aligns with the laser’s frequency, the Butterworth has the smallest influence to the signal while the F-P has the biggest. With a -1dB EOP, the amount of cascaded Butterworth optical filters with a bandwidth of 50 GHz is 18 in 40 Gbps NRZ-DQPSK systems and 12 in 100 Gbps PMNRZ- DQPSK systems. The value is reduced to 9 and 6 respectively for Febry-Perot optical filters. In the situation of frequency misalignment, the impairment caused by filters is more serious. Our research shows that with a frequency deviation of 5 GHz, only 12 and 9 Butterworth optical filters can be cascaded in 40 Gbps NRZ-DQPSK and 100 Gbps PM-NRZ-DQPSK systems respectively. We also study the signal impairment caused by different orders of the Butterworth filter model. Our study shows that although the higher-order has a smaller clipping effect in the transmission spectrum, it will introduce a more serious phase ripple which seriously affects the signal. Simulation result shows that the 2nd order Butterworth filter has the best performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Optical filters are crucial elements in optical communication networks. Their influence toward the optical signal will affect the communication quality seriously. In this paper we will study and simulate the optical signal impairment and crosstalk penalty caused by different kinds of filters, which include Butterworth, Bessel, Fiber Bragg Grating (FBG) and Fabry-Perot (F-P). Signal impairment from filter concatenation effect and crosstalk penalty from out-band and in-band are analyzed from Q-penalty, eye opening penalty (EOP) and optical spectrum. The simulation results show that signal impairment and crosstalk penalty induced by the Butterworth filter is the minimum among these four types of filters. Signal impairment caused by filter concatenation effect shows that when center frequency of all filters is aligned perfectly with the laser's frequency, 12 50-GHz Butterworth filters can be cascaded, with 1-dB EOP. This value is reduced to 9 when the center frequency is misaligned with 5 GHz. In the 50-GHz channel spacing DWDM networks, total Q-penalty induced by a pair of Butterworth filters based demultiplexer and multiplexer is lower than 0.5 dB when the filter bandwidth is in the range of 42-46 GHz.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ability to accurately observe the Earth's carbon cycles from space gives scientists an important tool to analyze climate change. Current space-borne Integrated-Path Differential Absorption (IPDA) Iidar concepts have the potential to meet this need. They are mainly based on the pulsed time-offlight principle, in which two high energy pulses of different wavelengths interrogate the atmosphere for its transmission properties and are backscattered by the ground. In this paper, feasibility study results of a Pseudo-Random Single Photon Counting (PRSPC) IPDA lidar are reported. The proposed approach replaces the high energy pulsed source (e.g. a solidstate laser), with a semiconductor laser in CW operation with a similar average power of a few Watts, benefiting from better efficiency and reliability. The auto-correlation property of Pseudo-Random Binary Sequence (PRBS) and temporal shifting of the codes can be utilized to transmit both wavelengths simultaneously, avoiding the beam misalignment problem experienced by pulsed techniques. The envelope signal to noise ratio has been analyzed, and various system parameters have been selected. By restricting the telescopes field-of-view, the dominant noise source of ambient light can be suppressed, and in addition with a low noise single photon counting detector, a retrieval precision of 1.5 ppm over 50 km along-track averaging could be attained. We also describe preliminary experimental results involving a negative feedback Indium Gallium Arsenide (InGaAs) single photon avalanche photodiode and a low power Distributed Feedback laser diode modulated with PRBS driven acoustic optical modulator. The results demonstrate that higher detector saturation count rates will be needed for use in future spacebourne missions but measurement linearity and precision should meet the stringent requirements set out by future Earthobserving missions.