21 resultados para POLYNOMIAL CHAOS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We examine the connectivity fluctuations across networks obtained when the horizontal visibility (HV) algorithm is used on trajectories generated by nonlinear circle maps at the quasiperiodic transition to chaos. The resultant HV graph is highly anomalous as the degrees fluctuate at all scales with amplitude that increases with the size of the network. We determine families of Pesin-like identities between entropy growth rates and generalized graph-theoretical Lyapunov exponents. An irrational winding number with pure periodic continued fraction characterizes each family. We illustrate our results for the so-called golden, silver, and bronze numbers

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electro-dynamical tethers emit waves in structured denominated Alfven wings. The Derivative Nonlineal Schrödinger Equation (DNLS) possesses the capacity to describe the propagation of circularly polarized Alfven waves of finite amplitude in cold plasmas. The DNLS equation is truncated to explore the coherent, weakly nonlinear, cubic coupling of three waves near resonance, one wave being linearly unstable and the other waves damped. In this article is presented a theoretical and numerical analysis when the growth rate of the unstable wave is next to zero considering two damping models: Landau and resistive. The DNLS equation presents a chaotic dynamics when is consider only three wave truncation. The evolution to chaos possesses three routes: hard transition, period-doubling and intermittence of type I.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A possible approach to the synchronization of chaotic circuits is reported. It is based on an Optically Programmable Logic Cell and as a consequence its output is digital, its application to cryptography in Optical Communications comes directly from its properties. The model here presented is based on a computer simulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Limit equilibrium is a common method used to analyze the stability of a slope, and minimization of the factor of safety or identification of critical slip surfaces is a classical geotechnical problem in the context of limit equilibrium methods for slope stability analyses. A mutative scale chaos optimization algorithm is employed in this study to locate the noncircular critical slip surface with Spencer’s method being employed to compute the factor of safety. Four examples from the literature—one homogeneous slope and three layered slopes—are employed to identify the efficiency and accuracy of this approach. Results indicate that the algorithm is flexible and that although it does not generally provide the minimum FS, it provides results that are close to the minimum, an improvement over other solutions proposed in the literature and with small relative errors with respect to other minimum factor of safety (FS) values reported in the literature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We characterize the chaos in a fractional Duffing’s equation computing the Lyapunov exponents and the dimension of the strange attractor in the effective phase space of the system. We develop a specific analytical method to estimate all Lyapunov exponents and check the results with the fiduciary orbit technique and a time series estimation method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Social behavior is mainly based on swarm colonies, in which each individual shares its knowledge about the environment with other individuals to get optimal solutions. Such co-operative model differs from competitive models in the way that individuals die and are born by combining information of alive ones. This paper presents the particle swarm optimization with differential evolution algorithm in order to train a neural network instead the classic back propagation algorithm. The performance of a neural network for particular problems is critically dependant on the choice of the processing elements, the net architecture and the learning algorithm. This work is focused in the development of methods for the evolutionary design of artificial neural networks. This paper focuses in optimizing the topology and structure of connectivity for these networks