18 resultados para Optical surfaces


Relevância:

30.00% 30.00%

Publicador:

Resumo:

La óptica anidólica es una rama de la óptica cuyo desarrollo comenzó a mediados de la década de 1960. Este relativamente nuevo campo de la óptica se centra en la transferencia eficiente de la luz, algo necesario en muchas aplicaciones, entre las que destacamos los concentradores solares y los sistemas de iluminación. Las soluciones de la óptica clásica a los problemas de la transferencia de energía de la luz sólo son adecuadas cuando los rayos de luz son paraxiales. La condición paraxial no se cumple en la mayoría de las aplicaciones para concentración e iluminación. Esta tesis contiene varios diseños free-form (aquellos que no presentan ninguna simetría, ni de rotación ni lineal) cuyas aplicaciones van destinadas a estos dos campos. El término nonimaging viene del hecho de que estos sistemas ópticos no necesitan formar una imagen del objeto, aunque no formar la imagen no es una condición necesaria. Otra palabra que se utiliza a veces en lugar de nonimaging es la palabra anidólico, viene del griego "an+eidolon" y tiene el mismo significado. La mayoría de los sistemas ópticos diseñados para aplicaciones anidólicas no presentan ninguna simetría, es decir, son free-form (anamórficos). Los sistemas ópticos free-form están siendo especialmente relevantes durante los últimos años gracias al desarrollo de las herramientas para su fabricación como máquinas de moldeo por inyección y el mecanizado multieje. Sin embargo, solo recientemente se han desarrollado técnicas de diseño anidólicas capaces de cumplir con estos grados de libertad. En aplicaciones de iluminación el método SMS3D permite diseñar dos superficies free-form para controlar las fuentes de luz extensas. En los casos en que se requiere una elevada asimetría de la fuente, el objeto o las restricciones volumétricos, las superficies free-form permiten obtener soluciones de mayor eficiencia, o disponer de menos elementos en comparación con las soluciones de simetría de rotación, dado que las superficies free-form tienen más grados de libertad y pueden realizar múltiples funciones debido a su naturaleza anamórfica. Los concentradores anidólicos son muy adecuados para la captación de energía solar, ya que el objetivo no es la reproducción de una imagen exacta del sol, sino sencillamente la captura de su energía. En este momento, el campo de la concentración fotovoltaica (CPV) tiende hacia sistemas de alta concentración con el fin de compensar el gasto de las células solares multi-unión (MJ) utilizadas como receptores, reduciendo su área. El interés en el uso de células MJ radica en su alta eficiencia de conversión. Para obtener sistemas competitivos en aplicaciones terrestres se recurre a sistemas fotovoltaicos de alta concentración (HCPV), con factores de concentración geométrica por encima de 500x. Estos sistemas se componen de dos (o más) elementos ópticos (espejos y/o lentes). En los sistemas presentados a lo largo de este trabajo se presentan ejemplos de concentradores HCPV con elementos reflexivos como etapa primaria, así como concentradores con elementos refractivos (lente de Fresnel). Con la necesidad de aumentar la eficiencia de los sistemas HCPV reales y con el fin de proporcionar la división más eficiente del espectro solar, células conteniendo cuatro o más uniones (con un potencial de alcanzar eficiencias de más del 45% a una concentración de cientos de soles) se exploran hoy en día. En esta tesis se presenta una de las posibles arquitecturas de división del espectro (spectrum-splitting en la literatura anglosajona) que utilizan células de concentración comercial. Otro campo de aplicación de la óptica nonimaging es la iluminación, donde es necesario proporcionar un patrón de distribución de la iluminación específico. La iluminación de estado sólido (SSL), basada en la electroluminiscencia de materiales semiconductores, está proporcionando fuentes de luz para aplicaciones de iluminación general. En la última década, los diodos emisores de luz (LED) de alto brillo han comenzado a reemplazar a las fuentes de luz convencionales debido a la superioridad en la calidad de la luz emitida, elevado tiempo de vida, compacidad y ahorro de energía. Los colimadores utilizados con LEDs deben cumplir con requisitos tales como tener una alta eficiencia, un alto control del haz de luz, una mezcla de color espacial y una gran compacidad. Presentamos un colimador de luz free-form con microestructuras capaz de conseguir buena colimación y buena mezcla de colores con una fuente de LED RGGB. Una buena mezcla de luz es importante no sólo para simplificar el diseño óptico de la luminaria sino también para evitar hacer binning de los chips. La mezcla de luz óptica puede reducir los costes al evitar la modulación por ancho de pulso y otras soluciones electrónicas patentadas para regulación y ajuste de color. Esta tesis consta de cuatro capítulos. Los capítulos que contienen la obra original de esta tesis son precedidos por un capítulo introductorio donde se presentan los conceptos y definiciones básicas de la óptica geométrica y en el cual se engloba la óptica nonimaging. Contiene principios de la óptica no formadora de imagen junto con la descripción de sus problemas y métodos de diseño. Asimismo se describe el método de Superficies Múltiples Simultáneas (SMS), que destaca por su versatilidad y capacidad de controlar varios haces de rayos. Adicionalmente también se describe la integración Köhler y sus aplicaciones en el campo de la energía fotovoltaica. La concentración fotovoltaica y la iluminación de estado sólido son introducidas junto con la revisión de su estado actual. El Segundo y Tercer Capítulo contienen diseños ópticos avanzados con aplicación en la concentración solar principalmente, mientras que el Cuarto Capítulo describe el colimador free-form con surcos que presenta buena mezcla de colores para aplicaciones de iluminación. El Segundo Capítulo describe dos concentradores ópticos HCPV diseñados con el método SMS en tres dimensiones (SMS3D) que llevan a cabo integración Köhler en dos direcciones con el fin de proporcionar una distribución de irradiancia uniforme libre de aberraciones cromáticas sobre la célula solar. Uno de los diseños es el concentrador XXR free-form diseñado con el método SMS3D, donde el espejo primario (X) y la lente secundaria (R) se dividen en cuatro sectores simétricos y llevan a cabo la integración Köhler (proporcionando cuatro unidades del array Köhler), mientras que el espejo intermedio (X) presenta simetría rotacional. Otro concentrador HCPV presentado es el Fresnel-RXI (FRXI) con una lente de Fresnel funcionando como elemento primario (POE) y una lente RXI como elemento óptico secundario (SOE), que presenta configuración 4-fold con el fin de realizar la integración Köhler. Las lentes RXI son dispositivos nonimaging conocidos, pero su aplicación como elemento secundario es novedosa. Los concentradores XXR y FRXI Köhler son ejemplos académicos de muy alta concentración (más de 2,000x, mientras que los sistemas convencionales hoy en día no suelen llegar a 1,000x) preparados para las células solares N-unión (con N>3), que probablemente requerirán una mayor concentración y alta uniformidad espectral de irradiancia con el fin de obtener sistemas CPV terrestres eficientes y rentables. Ambos concentradores están diseñados maximizando funciones de mérito como la eficiencia óptica, el producto concentración-aceptancia (CAP) y la uniformidad de irradiancia sobre la célula libre de la aberración cromática (integración Köhler). El Tercer Capítulo presenta una arquitectura para la división del espectro solar basada en un módulo HCPV con alta concentración (500x) y ángulo de aceptancia alto (>1º) que tiene por objeto reducir ambas fuentes de pérdidas de las células triple unión (3J) comerciales: el uso eficiente del espectro solar y la luz reflejada de los contactos metálicos y de la superficie de semiconductor. El módulo para la división del espectro utiliza el espectro solar más eficiente debido a la combinación de una alta eficiencia de una célula de concentración 3J (GaInP/GaInAs/Ge) y una de contacto posterior (BPC) de concentración de silicio (Si), así como la técnica de confinamiento externo para la recuperación de la luz reflejada por la célula 3J con el fin de ser reabsorbida por la célula. En la arquitectura propuesta, la célula 3J opera con su ganancia de corriente optimizada (concentración geométrica de 500x), mientras que la célula de silicio trabaja cerca de su óptimo también (135x). El módulo de spectrum-splitting consta de una lente de Fresnel plana como POE y un concentrador RXI free-form como SOE con un filtro paso-banda integrado en él. Tanto POE como SOE realizan la integración Köhler para producir homogeneización de luz sobre la célula. El filtro paso banda envía los fotones IR en la banda 900-1,150nm a la célula de silicio. Hay varios aspectos prácticos de la arquitectura del módulo presentado que ayudan a reducir la complejidad de los sistemas spectrum-splitting (el filtro y el secundario forman una sola pieza sólida, ambas células son coplanarias simplificándose el cableado y la disipación de calor, etc.). Prototipos prueba-de-concepto han sido ensamblados y probados a fin de demostrar la fabricabilidad del filtro y su rendimiento cuando se combina con la técnica de reciclaje de luz externa. Los resultados obtenidos se ajustan bastante bien a los modelos y a las simulaciones e invitan al desarrollo de una versión más compleja de este prototipo en el futuro. Dos colimadores sólidos con surcos free-form se presentan en el Cuarto Capítulo. Ambos diseños ópticos están diseñados originalmente usando el método SMS3D. La segunda superficie ópticamente activa está diseñada a posteriori como una superficie con surcos. El diseño inicial de dos espejos (XX) está diseñado como prueba de concepto. En segundo lugar, el diseño RXI free-form es comparable con los colimadores RXI existentes. Se trata de un diseño muy compacto y eficiente que proporciona una muy buena mezcla de colores cuando funciona con LEDs RGB fuera del eje óptico como en los RGB LEDs convencionales. Estos dos diseños son dispositivos free-form diseñados con la intención de mejorar las propiedades de mezcla de colores de los dispositivos no aplanáticos RXI con simetría de revolución y la eficiencia de los aplanáticos, logrando una buena colimación y una buena mezcla de colores. La capacidad de mezcla de colores del dispositivo no-aplanático mejora añadiendo características de un aplanático a su homólogo simétrico sin pérdida de eficiencia. En el caso del diseño basado en RXI, su gran ventaja consiste en su menor coste de fabricación ya que el proceso de metalización puede evitarse. Aunque algunos de los componentes presentan formas muy complejas, los costes de fabricación son relativamente insensibles a la complejidad del molde, especialmente en el caso de la producción en masa (tales como inyección de plástico), ya que el coste del molde se reparte entre todas las piezas fabricadas. Por último, las últimas dos secciones son las conclusiones y futuras líneas de investigación. ABSTRACT Nonimaging optics is a branch of optics whose development began in the mid-1960s. This rather new field of optics focuses on the efficient light transfer necessary in many applications, among which we highlight solar concentrators and illumination systems. The classical optics solutions to the problems of light energy transfer are only appropriate when the light rays are paraxial. The paraxial condition is not met in most applications for the concentration and illumination. This thesis explores several free-form designs (with neither rotational nor linear symmetry) whose applications are intended to cover the above mentioned areas and more. The term nonimaging comes from the fact that these optical systems do not need to form an image of the object, although it is not a necessary condition not to form an image. Another word sometimes used instead of nonimaging is anidolic, and it comes from the Greek “an+eidolon” and has the same meaning. Most of the optical systems designed for nonimaging applications are without any symmetry, i.e. free-form. Free-form optical systems become especially relevant lately with the evolution of free-form tooling (injection molding machines, multi-axis machining techniques, etc.). Nevertheless, only recently there are nonimaging design techniques that are able to meet these degrees of freedom. In illumination applications, the SMS3D method allows designing two free-form surfaces to control very well extended sources. In cases when source, target or volumetric constrains have very asymmetric requirements free-form surfaces are offering solutions with higher efficiency or with fewer elements in comparison with rotationally symmetric solutions, as free-forms have more degrees of freedom and they can perform multiple functions due to their free-form nature. Anidolic concentrators are well suited for the collection of solar energy, because the goal is not the reproduction of an exact image of the sun, but instead the collection of its energy. At this time, Concentration Photovoltaics (CPV) field is turning to high concentration systems in order to compensate the expense of multi-junction (MJ) solar cells used as receivers by reducing its area. Interest in the use of MJ cells lies in their very high conversion efficiency. High Concentration Photovoltaic systems (HCPV) with geometric concentration of more than 500x are required in order to have competitive systems in terrestrial applications. These systems comprise two (or more) optical elements, mirrors and/or lenses. Systems presented in this thesis encompass both main types of HCPV architectures: concentrators with primary reflective element and concentrators with primary refractive element (Fresnel lens). Demand for the efficiency increase of the actual HCPV systems as well as feasible more efficient partitioning of the solar spectrum, leads to exploration of four or more junction solar cells or submodules. They have a potential of reaching over 45% efficiency at concentration of hundreds of suns. One possible architectures of spectrum splitting module using commercial concentration cells is presented in this thesis. Another field of application of nonimaging optics is illumination, where a specific illuminance distribution pattern is required. The Solid State Lighting (SSL) based on semiconductor electroluminescence provides light sources for general illumination applications. In the last decade high-brightness Light Emitting Diodes (LEDs) started replacing conventional light sources due to their superior output light quality, unsurpassed lifetime, compactness and energy savings. Collimators used with LEDs have to meet requirements like high efficiency, high beam control, color and position mixing, as well as a high compactness. We present a free-form collimator with microstructures that performs good collimation and good color mixing with RGGB LED source. Good light mixing is important not only for simplifying luminaire optical design but also for avoiding die binning. Optical light mixing may reduce costs by avoiding pulse-width modulation and other patented electronic solutions for dimming and color tuning. This thesis comprises four chapters. Chapters containing the original work of this thesis are preceded by the introductory chapter that addresses basic concepts and definitions of geometrical optics on which nonimaging is developed. It contains fundamentals of nonimaging optics together with the description of its design problems, principles and methods, and with the Simultaneous Multiple Surface (SMS) method standing out for its versatility and ability to control several bundles of rays. Köhler integration and its applications in the field of photovoltaics are described as well. CPV and SSL fields are introduced together with the review on their background and their current status. Chapter 2 and Chapter 3 contain advanced optical designs with primarily application in solar concentration; meanwhile Chapter 4 portrays the free-form V-groove collimator with good color mixing property for illumination application. Chapter 2 describes two HCPV optical concentrators designed with the SMS method in three dimensions (SMS3D). Both concentrators represent Köhler integrator arrays that provide uniform irradiance distribution free from chromatic aberrations on the solar cell. One of the systems is the XXR free-form concentrator designed with the SMS3D method. The primary mirror (X) of this concentrator and secondary lens (R) are divided in four symmetric sectors (folds) that perform Köhler integration; meanwhile the intermediate mirror (X) is rotationally symmetric. Second HCPV concentrator is the Fresnel-RXI (FRXI) with flat Fresnel lens as the Primary Optical Element (POE) and an RXI lens as the Secondary Optical Element (SOE). This architecture manifests 4-fold configuration for performing Köhler integration (4 array units), as well. The RXI lenses are well-known nonimaging devices, but their application as SOE is novel. Both XXR and FRXI Köhler HCPV concentrators are academic examples of very high concentration (more than 2,000x meanwhile conventional systems nowadays have up to 1,000x) prepared for the near future N-junction (N>3) solar cells. In order to have efficient and cost-effective terrestrial CPV systems, those cells will probably require higher concentrations and high spectral irradiance uniformity. Both concentrators are designed by maximizing merit functions: the optical efficiency, concentration-acceptance angle (CAP) and cell-irradiance uniformity free from chromatic aberrations (Köhler integration). Chapter 3 presents the spectrum splitting architecture based on a HCPV module with high concentration (500x) and high acceptance angle (>1º). This module aims to reduce both sources of losses of the actual commercial triple-junction (3J) solar cells with more efficient use of the solar spectrum and with recovering the light reflected from the 3J cells’ grid lines and semiconductor surface. The solar spectrum is used more efficiently due to the combination of a high efficiency 3J concentration cell (GaInP/GaInAs/Ge) and external Back-Point-Contact (BPC) concentration silicon (Si) cell. By employing external confinement techniques, the 3J cell’s reflections are recovered in order to be re-absorbed by the cell. In the proposed concentrator architecture, the 3J cell operates at its optimized current gain (at geometrical concentration of 500x), while the Si cell works near its optimum, as well (135x). The spectrum splitting module consists of a flat Fresnel lens (as the POE), and a free-form RXI-type concentrator with a band-pass filter embedded in it (as the SOE), both POE and SOE performing Köhler integration to produce light homogenization. The band-pass filter sends the IR photons in the 900-1,150nm band to the Si cell. There are several practical aspects of presented module architecture that help reducing the added complexity of the beam splitting systems: the filter and secondary are forming a single solid piece, both cells are coplanar so the heat management and wiring is simplified, etc. Two proof-of-concept prototypes are assembled and tested in order to prove filter manufacturability and performance, as well as the potential of external light recycling technique. Obtained measurement results agree quite well with models and simulations, and show an opened path to manufacturing of the Fresnel RXI-type secondary concentrator with spectrum splitting strategy. Two free-form solid V-groove collimators are presented in Chapter 4. Both free-form collimators are originally designed with the SMS3D method. The second mirrored optically active surface is converted in a grooved surface a posteriori. Initial two mirror (XX) design is presented as a proof-of-concept. Second, RXI free-form design is comparable with existing RXI collimators as it is a highly compact and a highly efficient design. It performs very good color mixing of the RGGB LED sources placed off-axis like in conventional RGB LEDs. Collimators described here improve color mixing property of the prior art rotationally symmetric no-aplanatic RXI devices, and the efficiency of the aplanatic ones, accomplishing both good collimation and good color mixing. Free-form V-groove collimators enhance the no-aplanatic device's blending capabilities by adding aplanatic features to its symmetric counterpart with no loss in efficiency. Big advantage of the RXI design is its potentially lower manufacturing cost, since the process of metallization may be avoided. Although some components are very complicated for shaping, the manufacturing costs are relatively insensitive to the complexity of the mold especially in the case of mass production (such as plastic injection), as the cost of the mold is spread in many parts. Finally, last two sections are conclusions and future lines of investigation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reflectance anisotropy spectroscopy (RAS) was employed to determine the optimal specific molar flow of Sb needed to grow GaInP with a given order parameter by MOVPE. The RAS signature of GaInP surfaces exposed to different Sb/P molar flow ratios were recorded, and the RAS peak at 3.02 eV provided a feature that was sensitive to the amount of Sb on the surface. The range of Sb/P ratios over which Sb acts as a surfactant was determined using the RA intensity of this peak, and different GaInP layers were grown using different Sb/P ratios. The order parameter of the resulting layers was measured by PL at 20 K. This procedure may be extensible to the calibration of surfactant-mediated growth of other materials exhibiting characteristic RAS signatures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Esta tesis considera dos tipos de aplicaciones del diseño óptico: óptica formadora de imagen por un lado, y óptica anidólica (nonimaging) o no formadora de imagen, por otro. Las ópticas formadoras de imagen tienen como objetivo la obtención de imágenes de puntos del objeto en el plano de la imagen. Por su parte, la óptica anidólica, surgida del desarrollo de aplicaciones de concentración e iluminación, se centra en la transferencia de energía en forma de luz de forma eficiente. En general, son preferibles los diseños ópticos que den como resultado sistemas compactos, para ambos tipos de ópticas (formadora de imagen y anidólica). En el caso de los sistemas anidólicos, una óptica compacta permite tener costes de producción reducidos. Hay dos razones: (1) una óptica compacta presenta volúmenes reducidos, lo que significa que se necesita menos material para la producción en masa; (2) una óptica compacta es pequeña y ligera, lo que ahorra costes en el transporte. Para los sistemas ópticos de formación de imagen, además de las ventajas anteriores, una óptica compacta aumenta la portabilidad de los dispositivos, que es una gran ventaja en tecnologías de visualización portátiles, tales como cascos de realidad virtual (HMD del inglés Head Mounted Display). Esta tesis se centra por tanto en nuevos enfoques de diseño de sistemas ópticos compactos para aplicaciones tanto de formación de imagen, como anidólicas. Los colimadores son uno de los diseños clásicos dentro la óptica anidólica, y se pueden utilizar en aplicaciones fotovoltaicas y de iluminación. Hay varios enfoques a la hora de diseñar estos colimadores. Los diseños convencionales tienen una relación de aspecto mayor que 0.5. Con el fin de reducir la altura del colimador manteniendo el área de iluminación, esta tesis presenta un diseño de un colimador multicanal. En óptica formadora de imagen, las superficies asféricas y las superficies sin simetría de revolución (o freeform) son de gran utilidad de cara al control de las aberraciones de la imagen y para reducir el número y tamaño de los elementos ópticos. Debido al rápido desarrollo de sistemas de computación digital, los trazados de rayos se pueden realizar de forma rápida y sencilla para evaluar el rendimiento del sistema óptico analizado. Esto ha llevado a los diseños ópticos modernos a ser generados mediante el uso de diferentes técnicas de optimización multi-paramétricas. Estas técnicas requieren un buen diseño inicial como punto de partida para el diseño final, que será obtenido tras un proceso de optimización. Este proceso precisa un método de diseño directo para superficies asféricas y freeform que den como resultado un diseño cercano al óptimo. Un método de diseño basado en ecuaciones diferenciales se presenta en esta tesis para obtener un diseño óptico formado por una superficie freeform y dos superficies asféricas. Esta tesis consta de cinco capítulos. En Capítulo 1, se presentan los conceptos básicos de la óptica formadora de imagen y de la óptica anidólica, y se introducen las técnicas clásicas del diseño de las mismas. El Capítulo 2 describe el diseño de un colimador ultra-compacto. La relación de aspecto ultra-baja de este colimador se logra mediante el uso de una estructura multicanal. Se presentará su procedimiento de diseño, así como un prototipo fabricado y la caracterización del mismo. El Capítulo 3 describe los conceptos principales de la optimización de los sistemas ópticos: función de mérito y método de mínimos cuadrados amortiguados. La importancia de un buen punto de partida se demuestra mediante la presentación de un mismo ejemplo visto a través de diferentes enfoques de diseño. El método de las ecuaciones diferenciales se presenta como una herramienta ideal para obtener un buen punto de partida para la solución final. Además, diferentes técnicas de interpolación y representación de superficies asféricas y freeform se presentan para el procedimiento de optimización. El Capítulo 4 describe la aplicación del método de las ecuaciones diferenciales para un diseño de un sistema óptico de una sola superficie freeform. Algunos conceptos básicos de geometría diferencial son presentados para una mejor comprensión de la derivación de las ecuaciones diferenciales parciales. También se presenta un procedimiento de solución numérica. La condición inicial está elegida como un grado de libertad adicional para controlar la superficie donde se forma la imagen. Basado en este enfoque, un diseño anastigmático se puede obtener fácilmente y se utiliza como punto de partida para un ejemplo de diseño de un HMD con una única superficie reflectante. Después de la optimización, dicho diseño muestra mejor rendimiento. El Capítulo 5 describe el método de las ecuaciones diferenciales ampliado para diseños de dos superficies asféricas. Para diseños ópticos de una superficie, ni la superficie de imagen ni la correspondencia entre puntos del objeto y la imagen pueden ser prescritas. Con esta superficie adicional, la superficie de la imagen se puede prescribir. Esto conduce a un conjunto de tres ecuaciones diferenciales ordinarias implícitas. La solución numérica se puede obtener a través de cualquier software de cálculo numérico. Dicho procedimiento también se explica en este capítulo. Este método de diseño da como resultado una lente anastigmática, que se comparará con una lente aplanática. El diseño anastigmático converge mucho más rápido en la optimización y la solución final muestra un mejor rendimiento. ABSTRACT We will consider optical design from two points of view: imaging optics and nonimaging optics. Imaging optics focuses on the imaging of the points of the object. Nonimaging optics arose from the development of concentrators and illuminators, focuses on the transfer of light energy, and has wide applications in illumination and concentration photovoltaics. In general, compact optical systems are necessary for both imaging and nonimaging designs. For nonimaging optical systems, compact optics use to be important for reducing cost. The reasons are twofold: (1) compact optics is small in volume, which means less material is needed for mass-production; (2) compact optics is small in size and light in weight, which saves cost in transportation. For imaging optical systems, in addition to the above advantages, compact optics increases portability of devices as well, which contributes a lot to wearable display technologies such as Head Mounted Displays (HMD). This thesis presents novel design approaches of compact optical systems for both imaging and nonimaging applications. Collimator is a typical application of nonimaging optics in illumination, and can be used in concentration photovoltaics as well due to the reciprocity of light. There are several approaches for collimator designs. In general, all of these approaches have an aperture diameter to collimator height not greater than 2. In order to reduce the height of the collimator while maintaining the illumination area, a multichannel design is presented in this thesis. In imaging optics, aspheric and freeform surfaces are useful in controlling image aberrations and reducing the number and size of optical elements. Due to the rapid development of digital computing systems, ray tracing can be easily performed to evaluate the performance of optical system. This has led to the modern optical designs created by using different multi-parametric optimization techniques. These techniques require a good initial design to be a starting point so that the final design after optimization procedure can reach the optimum solution. This requires a direct design method for aspheric and freeform surface close to the optimum. A differential equation based design method is presented in this thesis to obtain single freeform and double aspheric surfaces. The thesis comprises of five chapters. In Chapter 1, basic concepts of imaging and nonimaging optics are presented and typical design techniques are introduced. Readers can obtain an understanding for the following chapters. Chapter 2 describes the design of ultra-compact collimator. The ultra-low aspect ratio of this collimator is achieved by using a multichannel structure. Its design procedure is presented together with a prototype and its evaluation. The ultra-compactness of the device has been approved. Chapter 3 describes the main concepts of optimizing optical systems: merit function and Damped Least-Squares method. The importance of a good starting point is demonstrated by presenting an example through different design approaches. The differential equation method is introduced as an ideal tool to obtain a good starting point for the final solution. Additionally, different interpolation and representation techniques for aspheric and freeform surface are presented for optimization procedure. Chapter 4 describes the application of differential equation method in the design of single freeform surface optical system. Basic concepts of differential geometry are presented for understanding the derivation of partial differential equations. A numerical solution procedure is also presented. The initial condition is chosen as an additional freedom to control the image surface. Based on this approach, anastigmatic designs can be readily obtained and is used as starting point for a single reflective surface HMD design example. After optimization, the evaluation shows better MTF. Chapter 5 describes the differential equation method extended to double aspheric surface designs. For single optical surface designs, neither image surface nor the mapping from object to image can be prescribed. With one more surface added, the image surface can be prescribed. This leads to a set of three implicit ordinary differential equations. Numerical solution can be obtained by MATLAB and its procedure is also explained. An anastigmatic lens is derived from this design method and compared with an aplanatic lens. The anastigmatic design converges much faster in optimization and the final solution shows better performance.