19 resultados para Optical spectroscopy
Resumo:
Contact Spatially Resolved Spectroscopy (SRS) measurements by means of a fiber-optics probe were employed for nondestructive assessment and monitoring of Braeburn apples during shelflife storage. SRS measurements and estimation of optical properties were calibrated and validated by means of liquid optical phantoms with known optical properties and a metamodeling method. The acquired optical properties (absorption and reduced scattering coefficients) for the apples during shelf-life storage were found to provide useful information for nondestructive evaluation of apple quality attributes (firmness and SSC) and for monitoring the changes in their microstructure and chemical composition. On-line SRS measurement was achieved by mounting the SRS probe over a conveyor system
Resumo:
Reflectance anisotropy spectroscopy (RAS) was employed to determine the optimal specific molar flow of Sb needed to grow GaInP with a given order parameter by MOVPE. The RAS signature of GaInP surfaces exposed to different Sb/P molar flow ratios were recorded, and the RAS peak at 3.02 eV provided a feature that was sensitive to the amount of Sb on the surface. The range of Sb/P ratios over which Sb acts as a surfactant was determined using the RA intensity of this peak, and different GaInP layers were grown using different Sb/P ratios. The order parameter of the resulting layers was measured by PL at 20 K. This procedure may be extensible to the calibration of surfactant-mediated growth of other materials exhibiting characteristic RAS signatures.
Resumo:
ZnTe doped with high concentrations of oxygen has been proposed in previous works as an intermediate band (IB) material for photovoltaic applications. The existence of extra optical transitions related to the presence of an IB has already been demonstrated in this material and it has been possible to measure the absorption coefficient of the transitions from the valence band (VB) to the IB. In this study, we present the first measurement of the absorption coefficient associated with transitions from the IB to the conduction band (CB) in ZnTeO. The samples used are 4-mum-thick ZnTe layers with or without O in a concentration ~10 19 cm -3, which have been grown on semiinsulating GaAs substrates by molecular beam epitaxy (MBE). The IB-CB absorption coefficient peaks for photon energies ~0.4 eV. It is extracted from reflectance and transmittance spectra measured using Fourier transform infrared (FTIR) spectroscopy. Under typical FTIR measurement conditions (low light intensity, broadband spectrum), the absorption coefficient in IB-to-CB transitions reaches 700 cm -1. This is much weaker than the one observed for VB-IB absorption. This result is consistent with the fact that the IB is expected to be nearly empty of electrons under equilibrium conditions in ZnTe(O).
Resumo:
This work presents a comprehensive optical characterization of Zn1−xMgxO thin films grown by spray pyrolysis (SP). Absorption measurements show the high potential of this technique to tune the bandgap from 3.30 to 4.11 eV by changing the Mg acetate content in the precursor solution, leading to a change of the Mg-content ranging from 0 up to 35%, as measured by transmission electron microscopy-energy dispersive x-ray spectroscopy. The optical emission of the films obtained by cathodoluminescence and photoluminescence spectroscopy shows a blue shift of the peak position from 3.26 to 3.89 eV with increasing Mg incorporation, with a clear excitonic contribution even at high Mg contents. The linewidth broadening of the absorption and emission spectra as well as the magnitude of the observed Stokes shift are found to significantly increase with the Mg content. This is shown to be related to both potential fluctuations induced by pure statistical alloy disorder and the presence of a tail of band states, the latter dominating for medium Mg contents. Finally, metal–semiconductor–metal photodiodes were fabricated showing a high sensitivity and a blue shift in the cut-off energy from 3.32 to 4.02 eV, i.e., down to 308 nm. The photodiodes present large UV/dark contrast ratios (102 − 107), indicating the viability of SP as a growth technique to fabricate low cost (Zn, Mg)O-based UV photodetectors reaching short wavelengths.