19 resultados para Multivariate Equations


Relevância:

20.00% 20.00%

Publicador:

Resumo:

El principal objetivo de la presente tesis es el de desarrollar y probar un código capaz de resolver las ecuaciones de Maxwell en el dominio del tiempo con Malla Refinada Adaptativa (AMR por sus siglas en inglés). AMR es una técnica de cálculo basada en dividir el dominio físico del problema en distintas mallas rectangulares paralelas a las direcciones cartesianas. Cada una de las mallas tendrá distinta resolución y aquellas con mayor resolución se sitúan allí dónde las ondas electromagnéticas se propagan o interaccionan con los materiales, es decir, dónde mayor precisión es requerida. Como las ondas van desplazándose por todo el dominio, las mayas deberán seguirlas. El principal problema al utilizar esta metodología se puede encontrar en las fronteras internas, dónde las distintas mallas se unen. Ya que el método más corrientemente utilizado para resolver las ecuaciones de Maxwell es el de las diferencias finitas en el dominio del tiempo (FDTD por sus siglas en inglés) , el trabajo comenzó tratando de adaptar AMR a FDTD. Tras descubrirse que esta interacción resultaba en problemas de inestabilidades en las fronteras internas antes citadas, se decidió cambiar a un método basado en volúmenes finitos en el dominio del tiempo (FVTD por sus siglas en inglés). Este se basa en considerar la forma en ecuaciones de conservación de las ecuaciones de Maxwell y aplicar a su resolución un esquema de Godunov. Se ha probado que es clave para el correcto funcionamiento del código la elección de un limitador de flujo que proteja los extremos de la onda de la disipación típica de los métodos de este tipo. Otro problema clásico a la hora de resolver las ecuaciones de Maxwell es el de tratar con las condiciones de frontera física cuando se simulan dominios no acotados, es decir, dónde las ondas deben salir del sistema sin producir ninguna reflexión. Normalmente la solución es la de disponer una banda absorbente en las fronteras físicas. En AMREM se ha desarrollado un nuevo método basado en los campos característicos que con menor requisito de CPU funcina suficientemente bien incluso en los casos más desfaborables. El código ha sido contrastado con soluciones analíticas de diferentes problemas y también su velocidad ha sido comparada con la de Meep, uno de los programas más conocidos del ámbito. También algunas aplicaciones han sido simuladas con el fin de demostrar el amplio espectro de campos en los que AMREM puede funcionar como una útil herramienta.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports extensive tests of empirical equations developed by different authors for harbour breakwater overtopping. First, the existing equations are compiled and evaluated as tools for estimating the overtopping rates on sloping and vertical breakwaters. These equations are then tested using the data obtained in a number of laboratory studies performed in the Centre for Harbours and Coastal Studies of the CEDEX, Spain. It was found that the recommended application ranges of the empirical equations typically deviate from those revealed in the experimental tests. In addition, a neural network model developed within the European CLASH Project is tested. The wind effects on overtopping are also assessed using a reduced scale physical model

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electric probes are objects immersed in the plasma with sharp boundaries which collect of emit charged particles. Consequently, the nearby plasma evolves under abrupt imposed and/or naturally emerging conditions. There could be localized currents, different time scales for plasma species evolution, charge separation and absorbing-emitting walls. The traditional numerical schemes based on differences often transform these disparate boundary conditions into computational singularities. This is the case of models using advection-diffusion differential equations with source-sink terms (also called Fokker-Planck equations). These equations are used in both, fluid and kinetic descriptions, to obtain the distribution functions or the density for each plasma species close to the boundaries. We present a resolution method grounded on an integral advancing scheme by using approximate Green's functions, also called short-time propagators. All the integrals, as a path integration process, are numerically calculated, what states a robust grid-free computational integral method, which is unconditionally stable for any time step. Hence, the sharp boundary conditions, as the current emission from a wall, can be treated during the short-time regime providing solutions that works as if they were known for each time step analytically. The form of the propagator (typically a multivariate Gaussian) is not unique and it can be adjusted during the advancing scheme to preserve the conserved quantities of the problem. The effects of the electric or magnetic fields can be incorporated into the iterative algorithm. The method allows smooth transitions of the evolving solutions even when abrupt discontinuities are present. In this work it is proposed a procedure to incorporate, for the very first time, the boundary conditions in the numerical integral scheme. This numerical scheme is applied to model the plasma bulk interaction with a charge-emitting electrode, dealing with fluid diffusion equations combined with Poisson equation self-consistently. It has been checked the stability of this computational method under any number of iterations, even for advancing in time electrons and ions having different time scales. This work establishes the basis to deal in future work with problems related to plasma thrusters or emissive probes in electromagnetic fields.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There are described equations for a pair comprising a Riemannian metric and a Killing field on a surface that contain as special cases the Einstein Weyl equations (in the sense of D. Calderbank) and a real version of a special case of the Abelian vortex equations, and it is shown that the property that a metric solve these equations is preserved by the Ricci flow. The equations are solved explicitly, and among the metrics obtained are all steady gradient Ricci solitons (e.g. the cigar soliton) and the sausage metric; there are found other examples of eternal, ancient, and immortal Ricci flows, as well as some Ricci flows with conical singularities.