64 resultados para Multi-input fuzzy inference system
Resumo:
The authors are from UPM and are relatively grouped, and all have intervened in different academic or real cases on the subject, at different times as being of different age. With precedent from E. Torroja and A. Páez in Madrid Spain Safety Probabilistic models for concrete about 1957, now in ICOSSAR conferences, author J.M. Antón involved since autumn 1967 for euro-steel construction in CECM produced a math model for independent load superposition reductions, and using it a load coefficient pattern for codes in Rome Feb. 1969, practically adopted for European constructions, giving in JCSS Lisbon Feb. 1974 suggestion of union for concrete-steel-al.. That model uses model for loads like Gumbel type I, for 50 years for one type of load, reduced to 1 year to be added to other independent loads, the sum set in Gumbel theories to 50 years return period, there are parallel models. A complete reliability system was produced, including non linear effects as from buckling, phenomena considered somehow in actual Construction Eurocodes produced from Model Codes. The system was considered by author in CEB in presence of Hydraulic effects from rivers, floods, sea, in reference with actual practice. When redacting a Road Drainage Norm in MOPU Spain an optimization model was realized by authors giving a way to determine the figure of Return Period, 10 to 50 years, for the cases of hydraulic flows to be considered in road drainage. Satisfactory examples were a stream in SE of Spain with Gumbel Type I model and a paper of Ven Te Chow with Mississippi in Keokuk using Gumbel type II, and the model can be modernized with more varied extreme laws. In fact in the MOPU drainage norm the redacting commission acted also as expert to set a table of return periods for elements of road drainage, in fact as a multi-criteria complex decision system. These precedent ideas were used e.g. in wide Codes, indicated in symposia or meetings, but not published in journals in English, and a condensate of contributions of authors is presented. The authors are somehow involved in optimization for hydraulic and agro planning, and give modest hints of intended applications in presence of agro and environment planning as a selection of the criteria and utility functions involved in bayesian, multi-criteria or mixed decision systems. Modest consideration is made of changing in climate, and on the production and commercial systems, and on others as social and financial.
Resumo:
Las técnicas de cirugía de mínima invasión (CMI) se están consolidando hoy en día como alternativa a la cirugía tradicional, debido a sus numerosos beneficios para los pacientes. Este cambio de paradigma implica que los cirujanos deben aprender una serie de habilidades distintas de aquellas requeridas en cirugía abierta. El entrenamiento y evaluación de estas habilidades se ha convertido en una de las mayores preocupaciones en los programas de formación de cirujanos, debido en gran parte a la presión de una sociedad que exige cirujanos bien preparados y una reducción en el número de errores médicos. Por tanto, se está prestando especial atención a la definición de nuevos programas que permitan el entrenamiento y la evaluación de las habilidades psicomotoras en entornos seguros antes de que los nuevos cirujanos puedan operar sobre pacientes reales. Para tal fin, hospitales y centros de formación están gradualmente incorporando instalaciones de entrenamiento donde los residentes puedan practicar y aprender sin riesgos. Es cada vez más común que estos laboratorios dispongan de simuladores virtuales o simuladores físicos capaces de registrar los movimientos del instrumental de cada residente. Estos simuladores ofrecen una gran variedad de tareas de entrenamiento y evaluación, así como la posibilidad de obtener información objetiva de los ejercicios. Los diferentes estudios de validación llevados a cabo dan muestra de su utilidad; pese a todo, los niveles de evidencia presentados son en muchas ocasiones insuficientes. Lo que es más importante, no existe un consenso claro a la hora de definir qué métricas son más útiles para caracterizar la pericia quirúrgica. El objetivo de esta tesis doctoral es diseñar y validar un marco de trabajo conceptual para la definición y validación de entornos para la evaluación de habilidades en CMI, en base a un modelo en tres fases: pedagógica (tareas y métricas a emplear), tecnológica (tecnologías de adquisición de métricas) y analítica (interpretación de la competencia en base a las métricas). Para tal fin, se describe la implementación práctica de un entorno basado en (1) un sistema de seguimiento de instrumental fundamentado en el análisis del vídeo laparoscópico; y (2) la determinación de la pericia en base a métricas de movimiento del instrumental. Para la fase pedagógica se diseñó e implementó un conjunto de tareas para la evaluación de habilidades psicomotoras básicas, así como una serie de métricas de movimiento. La validación de construcción llevada a cabo sobre ellas mostró buenos resultados para tiempo, camino recorrido, profundidad, velocidad media, aceleración media, economía de área y economía de volumen. Adicionalmente, los resultados obtenidos en la validación de apariencia fueron en general positivos en todos los grupos considerados (noveles, residentes, expertos). Para la fase tecnológica, se introdujo el EVA Tracking System, una solución para el seguimiento del instrumental quirúrgico basado en el análisis del vídeo endoscópico. La precisión del sistema se evaluó a 16,33ppRMS para el seguimiento 2D de la herramienta en la imagen; y a 13mmRMS para el seguimiento espacial de la misma. La validación de construcción con una de las tareas de evaluación mostró buenos resultados para tiempo, camino recorrido, profundidad, velocidad media, aceleración media, economía de área y economía de volumen. La validación concurrente con el TrEndo® Tracking System por su parte presentó valores altos de correlación para 8 de las 9 métricas analizadas. Finalmente, para la fase analítica se comparó el comportamiento de tres clasificadores supervisados a la hora de determinar automáticamente la pericia quirúrgica en base a la información de movimiento del instrumental, basados en aproximaciones lineales (análisis lineal discriminante, LDA), no lineales (máquinas de soporte vectorial, SVM) y difusas (sistemas adaptativos de inferencia neurodifusa, ANFIS). Los resultados muestran que en media SVM presenta un comportamiento ligeramente superior: 78,2% frente a los 71% y 71,7% obtenidos por ANFIS y LDA respectivamente. Sin embargo las diferencias estadísticas medidas entre los tres no fueron demostradas significativas. En general, esta tesis doctoral corrobora las hipótesis de investigación postuladas relativas a la definición de sistemas de evaluación de habilidades para cirugía de mínima invasión, a la utilidad del análisis de vídeo como fuente de información y a la importancia de la información de movimiento de instrumental a la hora de caracterizar la pericia quirúrgica. Basándose en estos cimientos, se han de abrir nuevos campos de investigación que contribuyan a la definición de programas de formación estructurados y objetivos, que puedan garantizar la acreditación de cirujanos sobradamente preparados y promocionen la seguridad del paciente en el quirófano. Abstract Minimally invasive surgery (MIS) techniques have become a standard in many surgical sub-specialties, due to their many benefits for patients. However, this shift in paradigm implies that surgeons must acquire a complete different set of skills than those normally attributed to open surgery. Training and assessment of these skills has become a major concern in surgical learning programmes, especially considering the social demand for better-prepared professionals and for the decrease of medical errors. Therefore, much effort is being put in the definition of structured MIS learning programmes, where practice with real patients in the operating room (OR) can be delayed until the resident can attest for a minimum level of psychomotor competence. To this end, skills’ laboratory settings are being introduced in hospitals and training centres where residents may practice and be assessed on their psychomotor skills. Technological advances in the field of tracking technologies and virtual reality (VR) have enabled the creation of new learning systems such as VR simulators or enhanced box trainers. These systems offer a wide range of tasks, as well as the capability of registering objective data on the trainees’ performance. Validation studies give proof of their usefulness; however, levels of evidence reported are in many cases low. More importantly, there is still no clear consensus on topics such as the optimal metrics that must be used to assess competence, the validity of VR simulation, the portability of tracking technologies into real surgeries (for advanced assessment) or the degree to which the skills measured and obtained in laboratory environments transfer to the OR. The purpose of this PhD is to design and validate a conceptual framework for the definition and validation of MIS assessment environments based on a three-pillared model defining three main stages: pedagogical (tasks and metrics to employ), technological (metric acquisition technologies) and analytical (interpretation of competence based on metrics). To this end, a practical implementation of the framework is presented, focused on (1) a video-based tracking system and (2) the determination of surgical competence based on the laparoscopic instruments’ motionrelated data. The pedagogical stage’s results led to the design and implementation of a set of basic tasks for MIS psychomotor skills’ assessment, as well as the definition of motion analysis parameters (MAPs) to measure performance on said tasks. Validation yielded good construct results for parameters such as time, path length, depth, average speed, average acceleration, economy of area and economy of volume. Additionally, face validation results showed positive acceptance on behalf of the experts, residents and novices. For the technological stage the EVA Tracking System is introduced. EVA provides a solution for tracking laparoscopic instruments from the analysis of the monoscopic video image. Accuracy tests for the system are presented, which yielded an average RMSE of 16.33pp for 2D tracking of the instrument on the image and of 13mm for 3D spatial tracking. A validation experiment was conducted using one of the tasks and the most relevant MAPs. Construct validation showed significant differences for time, path length, depth, average speed, average acceleration, economy of area and economy of volume; especially between novices and residents/experts. More importantly, concurrent validation with the TrEndo® Tracking System presented high correlation values (>0.7) for 8 of the 9 MAPs proposed. Finally, the analytical stage allowed comparing the performance of three different supervised classification strategies in the determination of surgical competence based on motion-related information. The three classifiers were based on linear (linear discriminant analysis, LDA), non-linear (support vector machines, SVM) and fuzzy (adaptive neuro fuzzy inference systems, ANFIS) approaches. Results for SVM show slightly better performance than the other two classifiers: on average, accuracy for LDA, SVM and ANFIS was of 71.7%, 78.2% and 71% respectively. However, when confronted, no statistical significance was found between any of the three. Overall, this PhD corroborates the investigated research hypotheses regarding the definition of MIS assessment systems, the use of endoscopic video analysis as the main source of information and the relevance of motion analysis in the determination of surgical competence. New research fields in the training and assessment of MIS surgeons can be proposed based on these foundations, in order to contribute to the definition of structured and objective learning programmes that guarantee the accreditation of well-prepared professionals and the promotion of patient safety in the OR.
Resumo:
Unmanned Aerial Vehicles (UAVs) industry is a fast growing sector. Nowadays, the market offers numerous possibilities for off-the-shelf UAVs such as quadrotors or fixed-wings. Until UAVs demonstrate advance capabilities such as autonomous collision avoidance they will be segregated and restricted to flight in controlled environments. This work presents a visual fuzzy servoing system for obstacle avoidance using UAVs. To accomplish this task we used the visual information from the front camera. Images are processed off-board and the result send to the Fuzzy Logic controller which then send commands to modify the orientation of the aircraft. Results from flight test are presented with a commercial off-the-shelf platform.
Resumo:
Background Objective assessment of psychomotor skills has become an important challenge in the training of minimally invasive surgical (MIS) techniques. Currently, no gold standard defining surgical competence exists for classifying residents according to their surgical skills. Supervised classification has been proposed as a means for objectively establishing competence thresholds in psychomotor skills evaluation. This report presents a study comparing three classification methods for establishing their validity in a set of tasks for basic skills’ assessment. Methods Linear discriminant analysis (LDA), support vector machines (SVM), and adaptive neuro-fuzzy inference systems (ANFIS) were used. A total of 42 participants, divided into an experienced group (4 expert surgeons and 14 residents with >10 laparoscopic surgeries performed) and a nonexperienced group (16 students and 8 residents with <10 laparoscopic surgeries performed), performed three box trainer tasks validated for assessment of MIS psychomotor skills. Instrument movements were captured using the TrEndo tracking system, and nine motion analysis parameters (MAPs) were analyzed. The performance of the classifiers was measured by leave-one-out cross-validation using the scores obtained by the participants. Results The mean accuracy performances of the classifiers were 71 % (LDA), 78.2 % (SVM), and 71.7 % (ANFIS). No statistically significant differences in the performance were identified between the classifiers. Conclusions The three proposed classifiers showed good performance in the discrimination of skills, especially when information from all MAPs and tasks combined were considered. A correlation between the surgeons’ previous experience and their execution of the tasks could be ascertained from results. However, misclassifications across all the classifiers could imply the existence of other factors influencing psychomotor competence.
Resumo:
Las futuras misiones para misiles aire-aire operando dentro de la atmósfera requieren la interceptación de blancos a mayores velocidades y más maniobrables, incluyendo los esperados vehículos aéreos de combate no tripulados. La intercepción tiene que lograrse desde cualquier ángulo de lanzamiento. Una de las principales discusiones en la tecnología de misiles en la actualidad es cómo satisfacer estos nuevos requisitos incrementando la capacidad de maniobra del misil y en paralelo, a través de mejoras en los métodos de guiado y control modernos. Esta Tesis aborda estos dos objetivos simultáneamente, al proponer un diseño integrando el guiado y el control de vuelo (autopiloto) y aplicarlo a misiles con control aerodinámico simultáneo en canard y cola. Un primer avance de los resultados obtenidos ha sido publicado recientemente en el Journal of Aerospace Engineering, en Abril de 2015, [Ibarrondo y Sanz-Aranguez, 2015]. El valor del diseño integrado obtenido es que permite al misil cumplir con los requisitos operacionales mencionados empleando únicamente control aerodinámico. El diseño propuesto se compara favorablemente con esquemas más tradicionales, consiguiendo menores distancias de paso al blanco y necesitando de menores esfuerzos de control incluso en presencia de ruidos. En esta Tesis se demostrará cómo la introducción del doble mando, donde tanto el canard como las aletas de cola son móviles, puede mejorar las actuaciones de un misil existente. Comparado con un misil con control en cola, el doble control requiere sólo introducir dos servos adicionales para accionar los canards también en guiñada y cabeceo. La sección de cola será responsable de controlar el misil en balanceo mediante deflexiones diferenciales de los controles. En el caso del doble mando, la complicación añadida es que los vórtices desprendidos de los canards se propagan corriente abajo y pueden incidir sobre las superficies de cola, alterando sus características de control. Como un primer aporte, se ha desarrollado un modelo analítico completo para la aerodinámica no lineal de un misil con doble control, incluyendo la caracterización de este efecto de acoplamiento aerodinámico. Hay dos modos de funcionamiento en picado y guiñada para un misil de doble mando: ”desviación” y ”opuesto”. En modo ”desviación”, los controles actúan en la misma dirección, generando un cambio inmediato en la sustentación y produciendo un movimiento de translación en el misil. La respuesta es rápida, pero en el modo ”desviación” los misiles con doble control pueden tener dificultades para alcanzar grandes ángulos de ataque y altas aceleraciones laterales. Cuando los controles actúan en direcciones opuestas, el misil rota y el ángulo de ataque del fuselaje se incrementa para generar mayores aceleraciones en estado estacionario, aunque el tiempo de respuesta es mayor. Con el modelo aerodinámico completo, es posible obtener una parametrización dependiente de los estados de la dinámica de corto periodo del misil. Debido al efecto de acoplamiento entre los controles, la respuesta en bucle abierto no depende linealmente de los controles. El autopiloto se optimiza para obtener la maniobra requerida por la ley de guiado sin exceder ninguno de los límites aerodinámicos o mecánicos del misil. Una segunda contribución de la tesis es el desarrollo de un autopiloto con múltiples entradas de control y que integra la aerodinámica no lineal, controlando los tres canales de picado, guiñada y cabeceo de forma simultánea. Las ganancias del autopiloto dependen de los estados del misil y se calculan a cada paso de integración mediante la resolución de una ecuación de Riccati de orden 21x21. Las ganancias obtenidas son sub-óptimas, debido a que una solución completa de la ecuación de Hamilton-Jacobi-Bellman no puede obtenerse de manera práctica, y se asumen ciertas simplificaciones. Se incorpora asimismo un mecanismo que permite acelerar la respuesta en caso necesario. Como parte del autopiloto, se define una estrategia para repartir el esfuerzo de control entre el canard y la cola. Esto se consigue mediante un controlador aumentado situado antes del bucle de optimización, que minimiza el esfuerzo total de control para maniobrar. Esta ley de alimentación directa mantiene al misil cerca de sus condiciones de equilibrio, garantizando una respuesta transitoria adecuada. El controlador no lineal elimina la respuesta de fase no-mínima característica de la cola. En esta Tesis se consideran dos diseños para el guiado y control, el control en Doble-Lazo y el control Integrado. En la aproximación de Doble-Lazo, el autopiloto se sitúa dentro de un bucle interior y se diseña independientemente del guiado, que conforma el bucle más exterior del control. Esta estructura asume que existe separación espectral entre los dos, esto es, que los tiempos de respuesta del autopiloto son mucho mayores que los tiempos característicos del guiado. En el estudio se combina el autopiloto desarrollado con una ley de guiado óptimo. Los resultados obtenidos demuestran que se consiguen aumentos muy importantes en las actuaciones frente a misiles con control canard o control en cola, y que la interceptación, cuando se lanza cerca del curso de colisión, se consigue desde cualquier ángulo alrededor del blanco. Para el misil de doble mando, la estrategia óptima resulta en utilizar el modo de control opuesto en la aproximación al blanco y utilizar el modo de desviación justo antes del impacto. Sin embargo la lógica de doble bucle no consigue el impacto cuando hay desviaciones importantes con respecto al curso de colisión. Una de las razones es que parte de la demanda de guiado se pierde, ya que el misil solo es capaz de modificar su aceleración lateral, y no tiene control sobre su aceleración axial, a no ser que incorpore un motor de empuje regulable. La hipótesis de separación mencionada, y que constituye la base del Doble-Bucle, puede no ser aplicable cuando la dinámica del misil es muy alta en las proximidades del blanco. Si se combinan el guiado y el autopiloto en un único bucle, la información de los estados del misil está disponible para el cálculo de la ley de guiado, y puede calcularse la estrategia optima de guiado considerando las capacidades y la actitud del misil. Una tercera contribución de la Tesis es la resolución de este segundo diseño, la integración no lineal del guiado y del autopiloto (IGA) para el misil de doble control. Aproximaciones anteriores en la literatura han planteado este sistema en ejes cuerpo, resultando en un sistema muy inestable debido al bajo amortiguamiento del misil en cabeceo y guiñada. Las simplificaciones que se tomaron también causan que el misil se deslice alrededor del blanco y no consiga la intercepción. En nuestra aproximación el problema se plantea en ejes inerciales y se recurre a la dinámica de los cuaterniones, eliminado estos inconvenientes. No se limita a la dinámica de corto periodo del misil, porque se construye incluyendo de modo explícito la velocidad dentro del bucle de optimización. La formulación resultante en el IGA es independiente de la maniobra del blanco, que sin embargo se ha de incluir en el cálculo del modelo en Doble-bucle. Un típico inconveniente de los sistemas integrados con controlador proporcional, es el problema de las escalas. Los errores de guiado dominan sobre los errores de posición del misil y saturan el controlador, provocando la pérdida del misil. Este problema se ha tratado aquí con un controlador aumentado previo al bucle de optimización, que define un estado de equilibrio local para el sistema integrado, que pasa a actuar como un regulador. Los criterios de actuaciones para el IGA son los mismos que para el sistema de Doble-Bucle. Sin embargo el problema matemático resultante es muy complejo. El problema óptimo para tiempo finito resulta en una ecuación diferencial de Riccati con condiciones terminales, que no puede resolverse. Mediante un cambio de variable y la introducción de una matriz de transición, este problema se transforma en una ecuación diferencial de Lyapunov que puede resolverse mediante métodos numéricos. La solución resultante solo es aplicable en un entorno cercano del blanco. Cuando la distancia entre misil y blanco es mayor, se desarrolla una solución aproximada basada en la solución de una ecuación algebraica de Riccati para cada paso de integración. Los resultados que se han obtenido demuestran, a través de análisis numéricos en distintos escenarios, que la solución integrada es mejor que el sistema de Doble-Bucle. Las trayectorias resultantes son muy distintas. El IGA preserva el guiado del misil y consigue maximizar el uso de la propulsión, consiguiendo la interceptación del blanco en menores tiempos de vuelo. El sistema es capaz de lograr el impacto donde el Doble-Bucle falla, y además requiere un orden menos de magnitud en la cantidad de cálculos necesarios. El efecto de los ruidos radar, datos discretos y errores del radomo se investigan. El IGA es más robusto, resultando menos afectado por perturbaciones que el Doble- Bucle, especialmente porque el núcleo de optimización en el IGA es independiente de la maniobra del blanco. La estimación de la maniobra del blanco es siempre imprecisa y contaminada por ruido, y degrada la precisión de la solución de Doble-Bucle. Finalmente, como una cuarta contribución, se demuestra que el misil con guiado IGA es capaz de realizar una maniobra de defensa contra un blanco que ataque por su cola, sólo con control aerodinámico. Las trayectorias estudiadas consideran una fase pre-programada de alta velocidad de giro, manteniendo siempre el misil dentro de su envuelta de vuelo. Este procedimiento no necesita recurrir a soluciones técnicamente más complejas como el control vectorial del empuje o control por chorro para ejecutar esta maniobra. En todas las demostraciones matemáticas se utiliza el producto de Kronecker como una herramienta practica para manejar las parametrizaciones dependientes de variables, que resultan en matrices de grandes dimensiones. ABSTRACT Future missions for air to air endo-atmospheric missiles require the interception of targets with higher speeds and more maneuverable, including forthcoming unmanned supersonic combat vehicles. The interception will need to be achieved from any angle and off-boresight launch conditions. One of the most significant discussions in missile technology today is how to satisfy these new operational requirements by increasing missile maneuvering capabilities and in parallel, through the development of more advanced guidance and control methods. This Thesis addresses these two objectives by proposing a novel optimal integrated guidance and autopilot design scheme, applicable to more maneuverable missiles with forward and rearward aerodynamic controls. A first insight of these results have been recently published in the Journal of Aerospace Engineering in April 2015, [Ibarrondo and Sanz-Aránguez, 2015]. The value of this integrated solution is that it allows the missile to comply with the aforementioned requirements only by applying aerodynamic control. The proposed design is compared against more traditional guidance and control approaches with positive results, achieving reduced control efforts and lower miss distances with the integrated logic even in the presence of noises. In this Thesis it will be demonstrated how the dual control missile, where canard and tail fins are both movable, can enhance the capabilities of an existing missile airframe. Compared to a tail missile, dual control only requires two additional servos to actuate the canards in pitch and yaw. The tail section will be responsible to maintain the missile stabilized in roll, like in a classic tail missile. The additional complexity is that the vortices shed from the canard propagate downstream where they interact with the tail surfaces, altering the tail expected control characteristics. These aerodynamic phenomena must be properly described, as a preliminary step, with high enough precision for advanced guidance and control studies. As a first contribution we have developed a full analytical model of the nonlinear aerodynamics of a missile with dual control, including the characterization of this cross-control coupling effect. This development has been produced from a theoretical model validated with reliable practical data obtained from wind tunnel experiments available in the scientific literature, complement with computer fluid dynamics and semi-experimental methods. There are two modes of operating a missile with forward and rear controls, ”divert” and ”opposite” modes. In divert mode, controls are deflected in the same direction, generating an increment in direct lift and missile translation. Response is fast, but in this mode, dual control missiles may have difficulties in achieving large angles of attack and high level of lateral accelerations. When controls are deflected in opposite directions (opposite mode) the missile airframe rotates and the body angle of attack is increased to generate greater accelerations in steady-state, although the response time is larger. With the aero-model, a state dependent parametrization of the dual control missile short term dynamics can be obtained. Due to the cross-coupling effect, the open loop dynamics for the dual control missile is not linearly dependent of the fin positions. The short term missile dynamics are blended with the servo system to obtain an extended autopilot model, where the response is linear with the control fins turning rates, that will be the control variables. The flight control loop is optimized to achieve the maneuver required by the guidance law without exceeding any of the missile aerodynamic or mechanical limitations. The specific aero-limitations and relevant performance indicators for the dual control are set as part of the analysis. A second contribution of this Thesis is the development of a step-tracking multi-input autopilot that integrates non-linear aerodynamics. The designed dual control missile autopilot is a full three dimensional autopilot, where roll, pitch and yaw are integrated, calculating command inputs simultaneously. The autopilot control gains are state dependent, and calculated at each integration step solving a matrix Riccati equation of order 21x21. The resulting gains are sub-optimal as a full solution for the Hamilton-Jacobi-Bellman equation cannot be resolved in practical terms and some simplifications are taken. Acceleration mechanisms with an λ-shift is incorporated in the design. As part of the autopilot, a strategy is defined for proper allocation of control effort between canard and tail channels. This is achieved with an augmented feed forward controller that minimizes the total control effort of the missile to maneuver. The feedforward law also maintains the missile near trim conditions, obtaining a well manner response of the missile. The nonlinear controller proves to eliminate the non-minimum phase effect of the tail. Two guidance and control designs have been considered in this Thesis: the Two- Loop and the Integrated approaches. In the Two-Loop approach, the autopilot is placed in an inner loop and designed separately from an outer guidance loop. This structure assumes that spectral separation holds, meaning that the autopilot response times are much higher than the guidance command updates. The developed nonlinear autopilot is linked in the study to an optimal guidance law. Simulations are carried on launching close to collision course against supersonic and highly maneuver targets. Results demonstrate a large boost in performance provided by the dual control versus more traditional canard and tail missiles, where interception with the dual control close to collision course is achieved form 365deg all around the target. It is shown that for the dual control missile the optimal flight strategy results in using opposite control in its approach to target and quick corrections with divert just before impact. However the Two-Loop logic fails to achieve target interception when there are large deviations initially from collision course. One of the reasons is that part of the guidance command is not followed, because the missile is not able to control its axial acceleration without a throttleable engine. Also the separation hypothesis may not be applicable for a high dynamic vehicle like a dual control missile approaching a maneuvering target. If the guidance and autopilot are combined into a single loop, the guidance law will have information of the missile states and could calculate the most optimal approach to the target considering the actual capabilities and attitude of the missile. A third contribution of this Thesis is the resolution of the mentioned second design, the non-linear integrated guidance and autopilot (IGA) problem for the dual control missile. Previous approaches in the literature have posed the problem in body axes, resulting in high unstable behavior due to the low damping of the missile, and have also caused the missile to slide around the target and not actually hitting it. The IGA system is posed here in inertial axes and quaternion dynamics, eliminating these inconveniences. It is not restricted to the missile short term dynamic, and we have explicitly included the missile speed as a state variable. The IGA formulation is also independent of the target maneuver model that is explicitly included in the Two-loop optimal guidance law model. A typical problem of the integrated systems with a proportional control law is the problem of scales. The guidance errors are larger than missile state errors during most of the flight and result in high gains, control saturation and loss of control. It has been addressed here with an integrated feedforward controller that defines a local equilibrium state at each flight point and the controller acts as a regulator to minimize the IGA states excursions versus the defined feedforward state. The performance criteria for the IGA are the same as in the Two-Loop case. However the resulting optimization problem is mathematically very complex. The optimal problem in a finite-time horizon results in an irresoluble state dependent differential Riccati equation with terminal conditions. With a change of variable and the introduction of a transition matrix, the equation is transformed into a time differential Lyapunov equation that can be solved with known numerical methods in real time. This solution results range limited, and applicable when the missile is in a close neighborhood of the target. For larger ranges, an approximate solution is used, obtained from solution of an algebraic matrix Riccati equation at each integration step. The results obtained show, by mean of several comparative numerical tests in diverse homing scenarios, than the integrated approach is a better solution that the Two- Loop scheme. Trajectories obtained are very different in the two cases. The IGA fully preserves the guidance command and it is able to maximize the utilization of the missile propulsion system, achieving interception with lower miss distances and in lower flight times. The IGA can achieve interception against off-boresight targets where the Two- Loop was not able to success. As an additional advantage, the IGA also requires one order of magnitude less calculations than the Two-Loop solution. The effects of radar noises, discrete radar data and radome errors are investigated. IGA solution is robust, and less affected by radar than the Two-Loop, especially because the target maneuvers are not part of the IGA core optimization loop. Estimation of target acceleration is always imprecise and noisy and degrade the performance of the two-Loop solution. The IGA trajectories are such that minimize the impact of radome errors in the guidance loop. Finally, as a fourth contribution, it is demonstrated that the missile with IGA guidance is capable of performing a defense against attacks from its rear hemisphere, as a tail attack, only with aerodynamic control. The studied trajectories have a preprogrammed high rate turn maneuver, maintaining the missile within its controllable envelope. This solution does not recur to more complex features in service today, like vector control of the missile thrust or side thrusters. In all the mathematical treatments and demonstrations, the Kronecker product has been introduced as a practical tool to handle the state dependent parametrizations that have resulted in very high order matrix equations.
Resumo:
La Diabetes mellitus es una enfermedad caracterizada por la insuficiente o nula producción de insulina por parte del páncreas o la reducida sensibilidad del organismo a esta hormona, que ayuda a que la glucosa llegue a los tejidos y al sistema nervioso para suministrar energía. La Diabetes tiene una mayor prevalencia en los países desarrollados debido a múltiples factores, entre ellos la obesidad, la vida sedentaria, y disfunciones en el sistema endocrino relacionadas con el páncreas. La Diabetes Tipo 1 es una enfermedad crónica e incurable, en la que son destruidas las células beta del páncreas, que producen la insulina, haciéndose necesaria la administración de insulina de forma exógena para controlar los niveles de glucosa en sangre. El paciente debe seguir una terapia con insulina administrada por vía subcutánea, que debe estar adaptada a sus necesidades metabólicas y a sus hábitos de vida. Esta terapia intenta imitar el perfil insulínico de un páncreas sano. La tecnología actual permite abordar el desarrollo del denominado “páncreas endocrino artificial” (PEA), que aportaría precisión, eficacia y seguridad en la aplicación de las terapias con insulina y permitiría una mayor independencia de los pacientes frente a su enfermedad, que en la actualidad están sujetos a una constante toma de decisiones. El PEA consta de un sensor continuo de glucosa, una bomba de infusión de insulina y un algoritmo de control, que calcula la insulina a infusionar utilizando los niveles de glucosa del paciente como información principal. Este trabajo presenta una modificación en el método de control en lazo cerrado propuesto en un proyecto previo. El controlador del que se parte está compuesto por un controlador basal booleano y un controlador borroso postprandial basado en reglas borrosas heredadas del controlador basal. El controlador postprandial administra el 50% del bolo manual (calculado a partir de la cantidad de carbohidratos que el paciente va a consumir) en el instante del aviso de la ingesta y reparte el resto en instantes posteriores. El objetivo es conseguir una regulación óptima del nivel de glucosa en el periodo postprandial. Con el objetivo de reducir las hiperglucemias que se producen en el periodo postprandial se realiza un transporte de insulina, que es un adelanto de la insulina basal del periodo postprandial que se suministrará junto con un porcentaje variable del bolo manual. Este porcentaje estará relacionado con el estado metabólico del paciente previo a la ingesta. Además se modificará la base de conocimiento para adecuar el comportamiento del controlador al periodo postprandial. Este proyecto está enfocado en la mejora del controlador borroso postprandial previo, modificando dos aspectos: la inferencia del controlador postprandial y añadiendo una toma de decisiones automática sobre el % del bolo manual y el transporte. Se ha propuesto un controlador borroso con una nueva inferencia, que no hereda las características del controlado basal, y ha sido adaptado al periodo postprandial. Se ha añadido una inferencia borrosa que modifica la cantidad de insulina a administrar en el momento del aviso de ingesta y la cantidad de insulina basal a transportar del periodo postprandial al bolo manual. La validación del algoritmo se ha realizado mediante experimentos en simulación utilizando una población de diez pacientes sintéticos pertenecientes al Simulador de Padua/Virginia, evaluando los resultados con estadísticos para después compararlos con los obtenidos con el método de control anterior. Tras la evaluación de los resultados se puede concluir que el nuevo controlador postprandial, acompañado de la toma de decisiones automática, realiza un mejor control glucémico en el periodo postprandial, disminuyendo los niveles de las hiperglucemias. ABSTRACT. Diabetes mellitus is a disease characterized by the insufficient or null production of insulin from the pancreas or by a reduced sensitivity to this hormone, which helps glucose get to the tissues and the nervous system to provide energy. Diabetes has more prevalence in developed countries due to multiple factors, including obesity, sedentary lifestyle and endocrine dysfunctions related to the pancreas. Type 1 Diabetes is a chronic, incurable disease in which beta cells in the pancreas that produce insulin are destroyed, and exogenous insulin delivery is required to control blood glucose levels. The patient must follow a therapy with insulin administered by the subcutaneous route that should be adjusted to the metabolic needs and lifestyle of the patient. This therapy tries to imitate the insulin profile of a non-pathological pancreas. Current technology can adress the development of the so-called “endocrine artificial pancreas” (EAP) that would provide accuracy, efficacy and safety in the application of insulin therapies and will allow patients a higher level of independence from their disease. Patients are currently tied to constant decision making. The EAP consists of a continuous glucose sensor, an insulin infusion pump and a control algorithm that computes the insulin amount that has to be infused using the glucose as the main source of information. This work shows modifications to the control method in closed loop proposed in a previous project. The reference controller is composed by a boolean basal controller and a postprandial rule-based fuzzy controller which inherits the rules from the basal controller. The postprandial controller administrates 50% of the bolus (calculated from the amount of carbohydrates that the patient is going to ingest) in the moment of the intake warning, and distributes the remaining in later instants. The goal is to achieve an optimum regulation of the glucose level in the postprandial period. In order to reduce hyperglycemia in the postprandial period an insulin transport is carried out. It consists on a feedforward of the basal insulin from the postprandial period, which will be administered with a variable percentage of the manual bolus. This percentage would be linked with the metabolic state of the patient in moments previous to the intake. Furthermore, the knowledge base is going to be modified in order to fit the controller performance to the postprandial period. This project is focused on the improvement of the previous controller, modifying two aspects: the postprandial controller inference, and the automatic decision making on the percentage of the manual bolus and the transport. A fuzzy controller with a new inference has been proposed and has been adapted to the postprandial period. A fuzzy inference has been added, which modifies both the amount of manual bolus to administrate at the intake warning and the amount of basal insulin to transport to the prandial bolus. The algorithm assessment has been done through simulation experiments using a synthetic population of 10 patients in the UVA/PADOVA simulator, evaluating the results with statistical parameters for further comparison with those obtained with the previous control method. After comparing results it can be concluded that the new postprandial controller, combined with the automatic decision making, carries out a better glycemic control in the postprandial period, decreasing levels of hyperglycemia.
Resumo:
La presente Tesis está orientada al análisis de la supervisión multidistribuida de tres procesos agroalimentarios: el secado solar, el transporte refrigerado y la fermentación de café, a través de la información obtenida de diferentes dispositivos de adquisición de datos, que incorporan sensores, así como el desarrollo de metodologías de análisis de series temporales, modelos y herramientas de control de procesos para la ayuda a la toma de decisiones en las operaciones de estos entornos. En esta tesis se han utilizado: tarjetas RFID (TemTrip®) con sistema de comunicación por radiofrecuencia y sensor de temperatura; el registrador (i-Button®), con sensor integrado de temperatura y humedad relativa y un tercer prototipo empresarial, módulo de comunicación inalámbrico Nlaza, que integra un sensor de temperatura y humedad relativa Sensirion®. Estos dispositivos se han empleado en la conformación de redes multidistribuidas de sensores para la supervisión de: A) Transportes de producto hortofrutícola realizados en condiciones comerciales reales, que son: dos transportes terrestre de producto de IV gama desde Murcia a Madrid; transporte multimodal (barco-barco) de limones desde Montevideo (Uruguay) a Cartagena (España) y transporte multimodal (barco-camión) desde Montevideo (Uruguay) a Verona (Italia). B) dos fermentaciones de café realizadas en Popayán (Colombia) en un beneficiadero. Estas redes han permitido registrar la dinámica espacio-temporal de temperaturas y humedad relativa de los procesos estudiados. En estos procesos de transporte refrigerado y fermentación la aplicación de herramientas de visualización de datos y análisis de conglomerados, han permitido identificar grupos de sensores que presentan patrones análogos de sus series temporales, caracterizando así zonas con dinámicas similares y significativamente diferentes del resto y permitiendo definir redes de sensores de menor densidad cubriendo las diferentes zonas identificadas. Las metodologías de análisis complejo de las series espacio-temporales (modelos psicrométricos, espacio de fases bidimensional e interpolaciones espaciales) permitieron la cuantificación de la variabilidad del proceso supervisado tanto desde el punto de vista dinámico como espacial así como la identificación de eventos. Constituyendo así herramientas adicionales de ayuda a la toma de decisiones en el control de los procesos. Siendo especialmente novedosa la aplicación de la representación bidimensional de los espacios de fases en el estudio de las series espacio-temporales de variables ambientales en aplicaciones agroalimentarias, aproximación que no se había realizado hasta el momento. En esta tesis también se ha querido mostrar el potencial de un sistema de control basado en el conocimiento experto como es el sistema de lógica difusa. Se han desarrollado en primer lugar, los modelos de estimación del contenido en humedad y las reglas semánticas que dirigen el proceso de control, el mejor modelo se ha seleccionado mediante un ensayo de secado realizado sobre bolas de hidrogel como modelo alimentario y finalmente el modelo se ha validado mediante un ensayo en el que se deshidrataban láminas de zanahoria. Los resultados sugirieron que el sistema de control desarrollado, es capaz de hacer frente a dificultades como las variaciones de temperatura día y noche, consiguiendo un producto con buenas características de calidad comparables a las conseguidas sin aplicar ningún control sobre la operación y disminuyendo así el consumo energético en un 98% con respecto al mismo proceso sin control. La instrumentación y las metodologías de análisis de datos implementadas en esta Tesis se han mostrado suficientemente versátiles y transversales para ser aplicadas a diversos procesos agroalimentarios en los que la temperatura y la humedad relativa sean criterios de control en dichos procesos, teniendo una aplicabilidad directa en el sector industrial ABSTRACT This thesis is focused on the analysis of multi-distributed supervision of three agri-food processes: solar drying, refrigerated transport and coffee fermentation, through the information obtained from different data acquisition devices with incorporated sensors, as well as the development of methodologies for analyzing temporary series, models and tools to control processes in order to help in the decision making in the operations within these environments. For this thesis the following has been used: RFID tags (TemTrip®) with a Radiofrequency ID communication system and a temperature sensor; the recorder (i-Button®), with an integrated temperature and relative humidity and a third corporate prototype, a wireless communication module Nlaza, which has an integrated temperature and relative humidity sensor, Sensirion®. These devices have been used in creating three multi-distributed networks of sensors for monitoring: A) Transport of fruits and vegetables made in real commercial conditions, which are: two land trips of IV range products from Murcia to Madrid; multimodal transport (ship - ship) of lemons from Montevideo (Uruguay) to Cartagena (Spain) and multimodal transport (ship - truck) from Montevideo (Uruguay) to Verona (Italy). B) Two coffee fermentations made in Popayan (Colombia) in a coffee processing plant. These networks have allowed recording the time space dynamics of temperatures and relative humidity of the processed under study. Within these refrigerated transport and fermentation processes, the application of data display and cluster analysis tools have allowed identifying sensor groups showing analogical patterns of their temporary series; thus, featuring areas with similar and significantly different dynamics from the others and enabling the definition of lower density sensor networks covering the different identified areas. The complex analysis methodologies of the time space series (psychrometric models, bi-dimensional phase space and spatial interpolation) allowed quantifying the process variability of the supervised process both from the dynamic and spatial points of view; as well as the identification of events. Thus, building additional tools to aid decision-making on process control brought the innovative application of the bi-dimensional representation of phase spaces in the study of time-space series of environmental variables in agri-food applications, an approach that had not been taken before. This thesis also wanted to show the potential of a control system based on specialized knowledge such as the fuzzy logic system. Firstly, moisture content estimation models and semantic rules directing the control process have been developed, the best model has been selected by an drying assay performed on hydrogel beads as food model; and finally the model has been validated through an assay in which carrot sheets were dehydrated. The results suggested that the control system developed is able to cope with difficulties such as changes in temperature daytime and nighttime, getting a product with good quality features comparable to those features achieved without applying any control over the operation and thus decreasing consumption energy by 98% compared to the same uncontrolled process. Instrumentation and data analysis methodologies implemented in this thesis have proved sufficiently versatile and cross-cutting to apply to several agri-food processes in which the temperature and relative humidity are the control criteria in those processes, having a direct effect on the industry sector.
Resumo:
The focus of this chapter is to study feature extraction and pattern classification methods from two medical areas, Stabilometry and Electroencephalography (EEG). Stabilometry is the branch of medicine responsible for examining balance in human beings. Balance and dizziness disorders are probably two of the most common illnesses that physicians have to deal with. In Stabilometry, the key nuggets of information in a time series signal are concentrated within definite time periods are known as events. In this chapter, two feature extraction schemes have been developed to identify and characterise the events in Stabilometry and EEG signals. Based on these extracted features, an Adaptive Fuzzy Inference Neural network has been applied for classification of Stabilometry and EEG signals.
Resumo:
Achieving reliable communication over HF channels is known to be challenging due to the particularly hostile propagation medium. To address this problem, diversity techniques were shown to be promising. In this paper, we demonstrate through experimental results the benefits of different diversity strategies when applied to multi-input-multi-output (MIMO) multicarrier systems. The performance gains of polarisation, space and frequency diversities are quantified using different measurement campaigns
Resumo:
This paper addresses the issue of the practicality of global flow analysis in logic program compilation, in terms of speed of the analysis, precisión, and usefulness of the information obtained. To this end, design and implementation aspects are discussed for two practical abstract interpretation-based flow analysis systems: MA , the MCC And-parallel Analyzer and Annotator; and Ms, an experimental mode inference system developed for SB-Prolog. The paper also provides performance data obtained (rom these implementations and, as an example of an application, a study of the usefulness of the mode information obtained in reducing run-time checks in independent and-parallelism.Based on the results obtained, it is concluded that the overhead of global flow analysis is not prohibitive, while the results of analysis can be quite precise and useful.
Resumo:
This paper addresses the issue of the practicality of global flow analysis in logic program compilation, in terms of both speed and precision of analysis. It discusses design and implementation aspects of two practical abstract interpretation-based flow analysis systems: MA3, the MOO Andparallel Analyzer and Annotator; and Ms, an experimental mode inference system developed for SB-Prolog. The paper also provides performance data obtained from these implementations. Based on these results, it is concluded that the overhead of global flow analysis is not prohibitive, while the results of analysis can be quite precise and useful.
Resumo:
Achieving reliable communication over HF channels is known to be challenging due to the particularly hostile propagation medium. To address this problem, diversity techniques were shown to be promising. In this paper, we demonstrate through experimental results the benefits of different diversity strategies when applied to multi-input-multi-output (MIMO) multicarrier systems. The performance gains of polarisation, space and frequency diversities are quantified using different measurement campaigns.
Resumo:
In the present article, an innovative approach for generation of an UWB monocycle is proposed and experimentally demonstrated. The proposed design features the combination of an interferometric device (SOA-Mach Zehnder interferometer) with an optical processor unit. The fusion of such components permits to generate, combine and customize UWB pulses. An optical pulse is used as pump signal and two optical carriers represent and the optical input of the system. The selection of a specific wavelength and therefore of a particular port provides the possibility of modifying the systems output pulse polarity. The capacity of transmitting several data sequence has been also evidenced.
Resumo:
En los últimos años, ha crecido de forma significativa el interés por la utilización de dispositivos capaces de reconocer gestos humanos. En este trabajo, se pretenden reconocer gestos manuales colocando sensores en la mano de una persona. El reconocimiento de gestos manuales puede ser implementado para diversos usos y bajo diversas plataformas: juegos (Wii), control de brazos robóticos, etc. Como primer paso, se realizará un estudio de las actuales técnicas de reconocimiento de gestos que utilizan acelerómetros como sensor de medida. En un segundo paso, se estudiará como los acelerómetros pueden utilizarse para intentar reconocer los gestos que puedan realizar una persona (mover el brazo hacia un lado, girar la mano, dibujar un cuadrado, etc.) y los problemas que de su utilización puedan derivarse. Se ha utilizado una IMU (Inertial Measurement Unit) como sensor de medida. Está compuesta por tres acelerómetros y tres giróscopos (MTi-300 de Xsens). Con las medidas que proporcionan estos sensores se realiza el cálculo de la posición y orientación de la mano, representando esta última en función de los ángulos de Euler. Un aspecto importante a destacar será el efecto de la gravedad en las medidas de las aceleraciones. A través de diversos cálculos y mediante la ayuda de los giróscopos se podrá corregir dicho efecto. Por último, se desarrollará un sistema que identifique la posición y orientación de la mano como gestos reconocidos utilizando lógica difusa. Tanto para la adquisición de las muestras, como para los cálculos de posicionamiento, se ha desarrollado un código con el programa Matlab. También, con este mismo software, se ha implementado un sistema de lógica difusa con la que se realizará el reconocimiento de los gestos, utilizando la herramienta FIS Editor. Las pruebas realizadas han consistido en la ejecución de nueve gestos por diferentes personas teniendo una tasa de reconocimiento comprendida entre el 90 % y 100 % dependiendo del gesto a identificar. ABSTRACT In recent years, it has grown significantly interest in the use of devices capable of recognizing human gestures. In this work, we aim to recognize hand gestures placing sensors on the hand of a person. The recognition of hand gestures can be implemented for different applications on different platforms: games (Wii), control of robotic arms ... As a first step, a study of current gesture recognition techniques that use accelerometers and sensor measurement is performed. In a second step, we study how accelerometers can be used to try to recognize the gestures that can make a person (moving the arm to the side, rotate the hand, draw a square, etc...) And the problems of its use can be derived. We used an IMU (Inertial Measurement Unit) as a measuring sensor. It comprises three accelerometers and three gyroscopes (Xsens MTI-300). The measures provided by these sensors to calculate the position and orientation of the hand are made, with the latter depending on the Euler angles. An important aspect to note is the effect of gravity on the measurements of the accelerations. Through various calculations and with the help of the gyroscopes can correct this effect. Finally, a system that identifies the position and orientation of the hand as recognized gestures developed using fuzzy logic. Both the acquisition of samples to calculate position, a code was developed with Matlab program. Also, with the same software, has implemented a fuzzy logic system to be held with the recognition of gestures using the FIS Editor. Tests have involved the execution of nine gestures by different people having a recognition rate between 90% and 100% depending on the gesture to identify.
Resumo:
This article presents a multi-agent expert system (SMAF) , that allows the input of incidents which occur in different elements of the telecommunications area. SMAF interacts with experts and general users, and each agent with all the agents? community, recording the incidents and their solutions in a knowledge base, without the analysis of their causes. The incidents are expressed using keywords taken from natural language (originally Spanish) and their main concepts are recorded with their severities as the users express them. Then, there is a search of the best solution for each incident, being helped by a human operator using a distancenotions between them.