27 resultados para Mobile phone involvement
Resumo:
El presente proyecto desarrolla una aplicación residente en un terminal móvil, que pretende proporcionar un valor añadido al actual proyecto Localiza, sistema de localización bajo demanda para personas con discapacidad severa. Mediante el desarrollo de este proyecto se pretende facilitar el acceso al teléfono móvil y al ordenador a las personas con discapacidad motriz. El objetivo final es ser capaz de controlar un teléfono móvil por medio de control remoto, mediante el uso de un ordenador personal. Para ello se establece una conexión remota entre el terminal móvil y el ordenador personal, a través del protocolo de comunicación Bluetooth. De este modo, a través de la aplicación móvil se transmite la información de posición de las coordenadas, proporcionada por el acelerómetro del terminal, a un servicio instalado en el ordenador que se encarga de gestionar la información recibida, y así crear las interrupciones pertinentes en el sistema operativo para mover el puntero del ratón. Para controlar el teléfono móvil de forma remota se dispondrá de un emulador de telefonía móvil instalado en el ordenador que implemente las funciones básicas de control de llamadas. Por medio de comunicación Bluetooth, las acciones que realice el usuario en emulador serán invocadas en el propio terminal móvil. SUMMARY. The project presented develops a mobile application, which is intended to provide an added value to the already existing project Localiza, on-demand position system for people with severe disabilities. This project aims to facilitate the access to the personal computer and to the mobile telephony environment for disabled people. The main goal is to be able to control a mobile phone by remote control, using a personal computer. Thus, a remote connexion will to be established between the mobile device and the personal computer, through Bluetooth communication protocol. Thus, the mobile application will transmit the coordinate’s position, provided by the accelerometer of the mobile device, to a Bluetooth service running in the personal computer. That service will be in charge of managing the information received in order to create the interruptions on the operational system for moving the mouse pointer. The remote controlling of the mobile device is carried out using a mobile telephony emulator installed in the personal computer, which will implement the basic functionality of calling control. Using Bluetooth communication, the user actions done in the emulator interface will be invoked on the mobile device itself.
Resumo:
Hoy en día el uso de dispositivos portátiles multimedia es ya una realidad totalmente habitual. Además, estos dispositivos tienen una capacidad de cálculo y unos recursos gráficos y de memoria altos, tanto es así que por ejemplo en un móvil se pueden reproducir vídeos de muy alta calidad o tener capacidad para manejar entornos 3D. El precio del uso de estos recursos es un mayor consumo de batería que en ocasiones es demasiado alto y acortan en gran medida la vida de la carga útil de la batería. El Grupo de Diseño Electrónico y Microelectrónico de la Universidad Politécnica de Madrid ha abierto una línea de trabajo que busca la optimización del consumo de energía en este tipo de dispositivos, concretamente en el ámbito de la reproducción de vídeo. El enfoque para afrontar la solución del problema se basa en obtener un mayor rendimiento de la batería a costa de disminuir la experiencia multimedia del usuario. De esta manera, cuando la carga de la batería esté por debajo de un determinado umbral mientras el dispositivo esté reproduciendo un vídeo de alta calidad será el dispositivo quien se autoconfigure dinámicamente para consumir menos potencia en esta tarea, reduciendo la tasa de imágenes por segundo o la resolución del vídeo que se descodifica. Además de lo citado anteriormente se propone dividir la descodificación y la representación del vídeo en dos procesadores, uno de propósito general y otro para procesado digital de señal, con esto se consigue que tener la misma capacidad de cálculo que con un solo procesador pero a una frecuencia menor. Para materializar la propuesta se usará la tarjeta BeagleBoard basada en un procesador multinúcleo OMAP3530 de Texas Instrument que contiene dos núcleos: un ARM1 Cortex-A8 y un DSP2 de la familia C6000. Este procesador multinúcleo además permite modificar la frecuencia de reloj y la tensión de alimentación dinámicamente para conseguir reducir de este modo el consumo del terminal. Por otro lado, como reproductor de vídeos se utilizará una versión de MPlayer que integra un descodificador de vídeo escalable que permite elegir dinámicamente la resolución o las imágenes por segundo que se decodifican para posteriormente mostrarlas. Este reproductor se ejecutará en el núcleo ARM pero debido a la alta carga computacional de la descodificación de vídeos, y que el ARM no está optimizado para este tipo de procesado de datos, el reproductor debe encargar la tarea de la descodificación al DSP. El objetivo de este Proyecto Fin de Carrera consiste en que mientras el descodificador de vídeo está ejecutándose en el núcleo DSP y el Mplayer en el núcleo ARM del OMAP3530 se pueda elegir dinámicamente qué parte del vídeo se descodifica, es decir, seleccionar en tiempo real la calidad o capa del vídeo que se quiere mostrar. Haciendo esto, se podrá quitar carga computacional al núcleo ARM y asignársela al DSP el cuál puede procesarla a menor frecuencia para ahorrar batería. 1 ARM: Es una arquitectura de procesadores de propósito general basada en RISC (Reduced Instruction Set Computer). Es desarrollada por la empresa inglesa ARM holdings. 2 DSP: Procesador Digital de Señal (Digital Signal Processor). Es un sistema basado en procesador, el cual está orientado al cálculo matemático a altas velocidad. Generalmente poseen varias unidades aritmético-lógicas (ALUs) para conseguir realizar varias operaciones simultáneamente. SUMMARY. Nowadays, the use of multimedia devices is a well known reality. In addition, these devices have high graphics and calculus performance and a lot of memory as well. In instance, we can play high quality videos and 3D environments in a mobile phone. That kind of use may increase the device's power consumption and make shorter the battery duration. Electronic and Microelectronic Design Group of Technical University of Madrid has a research line which is looking for optimization of power consumption while these devices are playing videos. The solution of this trouble is based on taking more advantage of battery by decreasing multimedia user experience. On this way, when battery charge is under a threshold while device is playing a high quality video the device is going to configure itself dynamically in order to decrease its power consumption by decreasing frame per second rate, video resolution or increasing the noise in the decoded frame. It is proposed splitting decoding and representation tasks in two processors in order to have the same calculus capability with lower frecuency. The first one is specialized in digital signal processing and the other one is a general purpose processor. In order to materialize this proposal we will use a board called BeagleBoard which is based on a multicore processor called OMAP3530 from Texas Instrument. This processor includes two cores: ARM Cortex-A8 and a TMS320C64+ DSP core. Changing clock frequency and supply voltage is allowed by OMAP3530, we can decrease the power consumption on this way. On the other hand, MPlayer will be used as video player. It includes a scalable video decoder which let us changing dynamically the resolution or frames per second rate of the video in order to show it later. This player will be executed by ARM core but this is not optimized for this task, for that reason, DSP core will be used to decoding video. The target of this final career project is being able to choose which part of the video is decoded each moment while decoder is executed by DSP and Mplayer by ARM. It will be able to change in real time the video quality, resolution and frames per second that user want to show. On this way, reducing the computational charge within the processor will be possible.
Resumo:
El proyecto consiste en la actualización del sistema de soporte operacional (OSS) con respecto a las nuevas redes para acceso móvil LTE/4G. El trabajo es un ejercicio real ejercido para Vodafone, compañía de telefonía en España. El producto OSS de Ericsson España es un sistema de supervisión de soporte de la red para cualquier tipo de nodo, pero el proyecto se centrará en los nodos de red LTE (Long Term Evolution). Con este sistema se puede gestionar cualquier cambio en los nodos, incidencias o actualizaciones en la red de manera fiable y sin pérdida de datos. Se profundizará en la descripción del software y del hardware del producto OSS. Se hablará de la tecnología LTE, detallando la evolución sufrida en las redes, el paso de 2G/3G a 4G y todo ello centrado en la industria puntera de las redes de telefonía móviles, así como las nuevas características que esta tecnología aporta y la compatibilidad con las anteriores. ABSTRACT. This project consists of the upgrade of the operational & support system (OSS) regarding the new functionality implemented for the LTE/4G mobile access networks. The project has been implemented in a live environment in Vodafone Spain. Ericsson OSS product consists of a network monitoring system for support and configuration of Core and Radio network elements. This project will be focused on LTE (Long Term Evolution) network nodes. The OSS system can manage any changes in the nodes, incidents or updates to the network in a reliable way without data loss. The description of OSS software and hardware is going to be explained in detail. LTE technology is going to be introduced, detailing the network evolution from 2G/3G to 4G, all focused on the industry leading mobile phone networks and the new features that this technology provides.
Resumo:
Ubiquitous computing (one person, many computers) is the third era in the history of computing. It follows the mainframe era (many people, one computer) and the PC era (one person, one computer). Ubiquitous computing empowers people to communicate with services by interacting with their surroundings. Most of these so called smart environments contain sensors sensing users’ actions and try to predict the users’ intentions and necessities based on sensor data. The main drawback of this approach is that the system might perform unexpected or unwanted actions, making the user feel out of control. In this master thesis we propose a different procedure based on Interactive Spaces: instead of predicting users’ intentions based on sensor data, the system reacts to users’ explicit predefined actions. To that end, we present REACHeS, a server platform which enables communication among services, resources and users located in the same environment. With REACHeS, a user controls services and resources by interacting with everyday life objects and using a mobile phone as a mediator between himself/herself, the system and the environment. REACHeS’ interfaces with a user are built upon NFC (Near Field Communication) technology. NFC tags are attached to objects in the environment. A tag stores commands that are sent to services when a user touches the tag with his/her NFC enabled device. The prototypes and usability tests presented in this thesis show the great potential of NFC to build such user interfaces.
Resumo:
En esta tesis doctoral se propone una técnica biométrica de verificación en teléfonos móviles consistente en realizar una firma en el aire con la mano que sujeta el teléfono móvil. Los acelerómetros integrados en el dispositivo muestrean las aceleraciones del movimiento de la firma en el aire, generando tres señales temporales que pueden utilizarse para la verificación del usuario. Se proponen varios enfoques para la implementación del sistema de verificación, a partir de los enfoques más utilizados en biometría de firma manuscrita: correspondencia de patrones, con variantes de los algoritmos de Needleman-Wusch (NW) y Dynamic Time Warping (DTW), modelos ocultos de Markov (HMM) y clasificador estadístico basado en Máquinas de Vector Soporte (SVM). Al no existir bases de datos públicas de firmas en el aire y con el fin de evaluar los métodos propuestos en esta tesis doctoral, se han capturado dos con distintas características; una con falsificaciones reales a partir del estudio de las grabaciones de usuarios auténticos y otra con muestras de usuarios obtenidas en diferentes sesiones a lo largo del tiempo. Utilizando estas bases de datos se han evaluado una gran cantidad de algoritmos para implementar un sistema de verificación basado en firma en el aire. Esta evaluación se ha realizado de acuerdo con el estándar ISO/IEC 19795, añadiendo el caso de verificación en mundo abierto no incluido en la norma. Además, se han analizado las características que hacen que una firma sea suficientemente segura. Por otro lado, se ha estudiado la permanencia de las firmas en el aire a lo largo del tiempo, proponiendo distintos métodos de actualización, basados en una adaptación dinámica del patrón, para mejorar su rendimiento. Finalmente, se ha implementado un prototipo de la técnica de firma en el aire para teléfonos Android e iOS. Los resultados de esta tesis doctoral han tenido un gran impacto, generando varias publicaciones en revistas internacionales, congresos y libros. La firma en el aire ha sido nombrada también en varias revistas de divulgación, portales de noticias Web y televisión. Además, se han obtenido varios premios en competiciones de ideas innovadoras y se ha firmado un acuerdo de explotación de la tecnología con una empresa extranjera. ABSTRACT This thesis proposes a biometric verification technique on mobile phones consisting on making a signature in the air with the hand holding a mobile phone. The accelerometers integrated in the device capture the movement accelerations, generating three temporal signals that can be used for verification. This thesis suggests several approaches for implementing the verification system, based on the most widely used approaches in handwritten signature biometrics: template matching, with a lot of variations of the Needleman- Wusch (NW) and Dynamic Time Warping (DTW) algorithms, Hidden Markov Models (HMM) and Supported Vector Machines (SVM). As there are no public databases of in-air signatures and with the aim of assessing the proposed methods, there have been captured two databases; one. with real falsification attempts from the study of recordings captured when genuine users made their signatures in front of a camera, and other, with samples obtained in different sessions over a long period of time. These databases have been used to evaluate a lot of algorithms in order to implement a verification system based on in-air signatures. This evaluation has been conducted according to the standard ISO/IEC 19795, adding the open-set verification scenario not included in the norm. In addition, the characteristics of a secure signature are also investigated, as well as the permanence of in-air signatures over time, proposing several updating strategies to improve its performance. Finally, a prototype of in-air signature has been developed for iOS and Android phones. The results of this thesis have achieved a high impact, publishing several articles in SCI journals, conferences and books. The in-air signature deployed in this thesis has been also referred in numerous media. Additionally, this technique has won several awards in the entrepreneurship field and also an exploitation agreement has been signed with a foreign company.
Resumo:
This paper describes a knowledge-based approach for summarizing and presenting the behavior of hydrologic networks. This approach has been designed for visualizing data from sensors and simulations in the context of emergencies caused by floods. It follows a solution for event summarization that exploits physical properties of the dynamic system to automatically generate summaries of relevant data. The summarized information is presented using different modes such as text, 2D graphics and 3D animations on virtual terrains. The presentation is automatically generated using a hierarchical planner with abstract presentation fragments corresponding to discourse patterns, taking into account the characteristics of the user who receives the information and constraints imposed by the communication devices (mobile phone, computer, fax, etc.). An application following this approach has been developed for a national hydrologic information infrastructure of Spain.
Resumo:
La aparición de los smartphones, trajo consigo el desarrollo de aplicaciones móviles de mensajería instantánea. Estas aplicaciones aprovechan la infraestructura de las redes de datos para enviar los mensajes de unos dispositivos a otros, lo que supone la posibilidad de enviar mensajes ilimitados a bajo coste. Hoy en día lo inusual es ver a alguna persona que haga uso de los antiguos mensajes de texto o sms (Short Message Service), que además llevan el coste de comunicación definido por las distintas operadoras. Tanto ha sido su auge que se ha convertido en uno de los principales medios de comunicación tanto en el ámbito personal como empresarial. Desafortunadamente, cada vez son más los conductores que hacen uso de las aplicaciones de mensajería para enviar y recibir mensajes mientras conducen, a pesar de que su uso está totalmente prohibido y penado por la ley. Por este motivo, en este proyecto se propone la modificación de la aplicación de mensajería Telegram, que permite controlar el env´ıo y recepción de mensajes únicamente utilizando la voz, evitando así cualquier tipo de distracci´on ocasionada por la interacción táctil con el dispositivo. Esta idea propuesta en el proyecto puede ayudar a reducir el número de accidentes ocasionados por este tipo de distracciones al volante, así como las posibles multas e incidentes que pueda ocasionar el uso del móvil durante la conducción. ---ABSTRACT---The emergence of smartphones, fostered the development of mobile instant messaging applications. These applications take advantage of the infrastructure of data networks to send messages between devices with almost no additional cost attached to it. Today you will hardly be able to find a person who makes use of the old text messages or sms (Short Message Service), and therefore bears the cost of communication defined by the respective operators. This boom has been such that it has become one of the main communication methods or channels in both the personal and work environments. Unfortunately, more and more drivers use messaging applications to send and receive messages while they are driving, even though its use is strictly prohibited and punished by law. Therefore our objective is to modify the existing messaging application Telegram allowing interaction with the mobile device by only using the user’s voice to send and receive messages, avoiding any distractions that any tactile interaction with the device could cause. The aim is to significantly try to reduce accidents caused while driving, as well as to avoid any related potential fines and incidents that may result from use of mobile phone while driving.
Resumo:
En este Trabajo fin de Grado se ha creado la parte funcional de una aplicación móvil dejando la parte de la interfaz libre para su futura implementación. La aplicación es un magnificador y está destinada a aquellas personas con baja visión, permitiéndoles hacer aumento de imágenes y textos capturados por la cámara del dispositivo, con la posibilidad de que puedan cambiar algunos parámetros de la magnificación para poderlo ver mejor. La parte funcional de la aplicación fue nombrada como librería magnificador, ya que se compone de métodos implementados en Java que permiten hacer diferentes modificaciones de la imagen o del video visualizado. Se cubrieron todas las fases de desarrollo más significativas de un sistema software: análisis, diseño, implementación y pruebas. La aplicación se desarrolló para Android. Se trabajó en Eclipse con Android SDK. Para el procesamiento de las imágenes se aprovechó una librería externa, OpenCV, para evitar “inventar la rueda”, es decir, no escribir algoritmos de transformación de las imágenes que seguramente no podrían ser tan eficientes como los implementados en dicha librería creada por Intel. ---ABSTRACT---In this Final Project, the functional part of mobile phone application was created, leaving the interface parte for future implementation. The application is a magnifier and is oriented to people with very low vision allowing them to enlarge images of printed documents captured by the camera of the mobile phone device, with the possibility that they can change some parameters of magnification so that it can see better. The functional part of this application was named magnifier library because it composes of methods, implemented in Java, that allows changing between different modes of the preview of the image or video. All of the most significant phases of software development were satisfied: analysis, design, implementation and tests. The application was created for Android. The work was done in Eclipse with Android SDK plugin. For the image processing, an external library, OpenCv, was used, to avoid the unreachable intent of creation of effective algorithms that would never be so potent like the implemented in this library created by Intel.
Resumo:
RESUMEN Con la irrupción y el auge de las tecnologías móviles en estos últimos años, se ha hecho patente que los procesos de gestión tienden a ser controlados a través de estas tecnologías, permitiendo al usuario centralizar todos los servicios que le sea posible en un dispositivo de uso tan común como el teléfono móvil, así como acceder a ellos de forma rápida y cómoda. El sistema de tutorías de la Universidad Politécnica de Madrid no es la excepción. Desde su creación, el Grupo de Innovación Educativa Tutorial Action (GIETA) [1] ha trabajado en la modernización del proceso de gestión que conlleva el sistema de tutorías, buscando las deficiencias del sistema tradicional que pudiesen resolverse utilizando la tecnología. Este Trabajo de Fin de Grado (TFG) ha tenido como objetivo apoyar la labor iniciada por el GIETA, desarrollando un sistema de gestión de tutorías mediante una aplicación móvil. Para lograr este objetivo, inicialmente se realizó un proceso de reflexión sobre, entre otras cuestiones, la razón de ser de la aplicación a desarrollar, las ventajas que aportaría al usuario final, aquellos riesgos que podían amenazar al proyecto, etc. Este proceso se englobó dentro de la herramienta Agile Inception Deck. Tras este proceso de reflexión, se estructuró el proyecto en fases o sprints de desarrollo, en las que se llevó a cabo la implementación del resultado final de este TFG, una aplicación móvil para el sistema operativo Android, que aporta funcionalidad que resuelve todos los requisitos asociados a las distintas historias de usuario definidas para el proyecto. ABSTRACT With the rise of mobile technologies in recent years, it has become clear that management processes tend to be controlled through these technologies, allowing users to centralize all services as possible, using a device as common as the mobile phone, and access them quickly and easily. The tutorial system at the Technical University of Madrid is not an exception. Since it’s creation, the Group of Educational Innovation Tutorial Action has worked on the modernization of the management process that involves the tutorial system, looking for weaknesses of the traditional system that could be solved using technology. This TFG has aimed to support the work initiated by the GIETA, developing a tutorship management system through a mobile application. To achieve this goal, initially a process of reflection was held about, inter alia, the rationale for the application to be developed, the advantages it would bring to the final user, the risks that could threaten the project, etc. This process is encompassed within the Agile Inception Deck tool. After this process of reflection, the project was divided into phases or sprints, in which took place the implementation of the outcome of the TFG, a mobile application for the Android operating system, which provides functionality that meets all the requirements associated with the different user stories defined for the project.
Resumo:
Determinar con buena precisión la posición en la que se encuentra un terminal móvil, cuando éste se halla inmerso en un entorno de interior (centros comerciales, edificios de oficinas, aeropuertos, estaciones, túneles, etc), es el pilar básico sobre el que se sustentan un gran número de aplicaciones y servicios. Muchos de esos servicios se encuentran ya disponibles en entornos de exterior, aunque los entornos de interior se prestan a otros servicios específicos para ellos. Ese número, sin embargo, podría ser significativamente mayor de lo que actualmente es, si no fuera necesaria una costosa infraestructura para llevar a cabo el posicionamiento con la precisión adecuada a cada uno de los hipotéticos servicios. O, igualmente, si la citada infraestructura pudiera tener otros usos distintos, además del relacionado con el posicionamiento. La usabilidad de la misma infraestructura para otros fines distintos ofrecería la oportunidad de que la misma estuviera ya presente en las diferentes localizaciones, porque ha sido previamente desplegada para esos otros usos; o bien facilitaría su despliegue, porque el coste de esa operación ofreciera un mayor retorno de usabilidad para quien lo realiza. Las tecnologías inalámbricas de comunicaciones basadas en radiofrecuencia, ya en uso para las comunicaciones de voz y datos (móviles, WLAN, etc), cumplen el requisito anteriormente indicado y, por tanto, facilitarían el crecimiento de las aplicaciones y servicios basados en el posicionamiento, en el caso de poderse emplear para ello. Sin embargo, determinar la posición con el nivel de precisión adecuado mediante el uso de estas tecnologías, es un importante reto hoy en día. El presente trabajo pretende aportar avances significativos en este campo. A lo largo del mismo se llevará a cabo, en primer lugar, un estudio de los principales algoritmos y técnicas auxiliares de posicionamiento aplicables en entornos de interior. La revisión se centrará en aquellos que sean aptos tanto para tecnologías móviles de última generación como para entornos WLAN. Con ello, se pretende poner de relieve las ventajas e inconvenientes de cada uno de estos algoritmos, teniendo como motivación final su aplicabilidad tanto al mundo de las redes móviles 3G y 4G (en especial a las femtoceldas y small-cells LTE) como al indicado entorno WLAN; y teniendo siempre presente que el objetivo último es que vayan a ser usados en interiores. La principal conclusión de esa revisión es que las técnicas de triangulación, comúnmente empleadas para realizar la localización en entornos de exterior, se muestran inútiles en los entornos de interior, debido a efectos adversos propios de este tipo de entornos como la pérdida de visión directa o los caminos múltiples en el recorrido de la señal. Los métodos de huella radioeléctrica, más conocidos bajo el término inglés “fingerprinting”, que se basan en la comparación de los valores de potencia de señal que se están recibiendo en el momento de llevar a cabo el posicionamiento por un terminal móvil, frente a los valores registrados en un mapa radio de potencias, elaborado durante una fase inicial de calibración, aparecen como los mejores de entre los posibles para los escenarios de interior. Sin embargo, estos sistemas se ven también afectados por otros problemas, como por ejemplo los importantes trabajos a realizar para ponerlos en marcha, y la variabilidad del canal. Frente a ellos, en el presente trabajo se presentan dos contribuciones originales para mejorar los sistemas basados en los métodos fingerprinting. La primera de esas contribuciones describe un método para determinar, de manera sencilla, las características básicas del sistema a nivel del número de muestras necesarias para crear el mapa radio de la huella radioeléctrica de referencia, junto al número mínimo de emisores de radiofrecuencia que habrá que desplegar; todo ello, a partir de unos requerimientos iniciales relacionados con el error y la precisión buscados en el posicionamiento a realizar, a los que uniremos los datos correspondientes a las dimensiones y realidad física del entorno. De esa forma, se establecen unas pautas iniciales a la hora de dimensionar el sistema, y se combaten los efectos negativos que, sobre el coste o el rendimiento del sistema en su conjunto, son debidos a un despliegue ineficiente de los emisores de radiofrecuencia y de los puntos de captura de su huella. La segunda contribución incrementa la precisión resultante del sistema en tiempo real, gracias a una técnica de recalibración automática del mapa radio de potencias. Esta técnica tiene en cuenta las medidas reportadas continuamente por unos pocos puntos de referencia estáticos, estratégicamente distribuidos en el entorno, para recalcular y actualizar las potencias registradas en el mapa radio. Un beneficio adicional a nivel operativo de la citada técnica, es la prolongación del tiempo de usabilidad fiable del sistema, bajando la frecuencia en la que se requiere volver a capturar el mapa radio de potencias completo. Las mejoras anteriormente citadas serán de aplicación directa en la mejora de los mecanismos de posicionamiento en interiores basados en la infraestructura inalámbrica de comunicaciones de voz y datos. A partir de ahí, esa mejora será extensible y de aplicabilidad sobre los servicios de localización (conocimiento personal del lugar donde uno mismo se encuentra), monitorización (conocimiento por terceros del citado lugar) y seguimiento (monitorización prolongada en el tiempo), ya que todos ellas toman como base un correcto posicionamiento para un adecuado desempeño. ABSTRACT To find the position where a mobile is located with good accuracy, when it is immersed in an indoor environment (shopping centers, office buildings, airports, stations, tunnels, etc.), is the cornerstone on which a large number of applications and services are supported. Many of these services are already available in outdoor environments, although the indoor environments are suitable for other services that are specific for it. That number, however, could be significantly higher than now, if an expensive infrastructure were not required to perform the positioning service with adequate precision, for each one of the hypothetical services. Or, equally, whether that infrastructure may have other different uses beyond the ones associated with positioning. The usability of the same infrastructure for purposes other than positioning could give the opportunity of having it already available in the different locations, because it was previously deployed for these other uses; or facilitate its deployment, because the cost of that operation would offer a higher return on usability for the deployer. Wireless technologies based on radio communications, already in use for voice and data communications (mobile, WLAN, etc), meet the requirement of additional usability and, therefore, could facilitate the growth of applications and services based on positioning, in the case of being able to use it. However, determining the position with the appropriate degree of accuracy using these technologies is a major challenge today. This paper provides significant advances in this field. Along this work, a study about the main algorithms and auxiliar techniques related with indoor positioning will be initially carried out. The review will be focused in those that are suitable to be used with both last generation mobile technologies and WLAN environments. By doing this, it is tried to highlight the advantages and disadvantages of each one of these algorithms, having as final motivation their applicability both in the world of 3G and 4G mobile networks (especially in femtocells and small-cells of LTE) and in the WLAN world; and having always in mind that the final aim is to use it in indoor environments. The main conclusion of that review is that triangulation techniques, commonly used for localization in outdoor environments, are useless in indoor environments due to adverse effects of such environments as loss of sight or multipaths. Triangulation techniques used for external locations are useless due to adverse effects like the lack of line of sight or multipath. Fingerprinting methods, based on the comparison of Received Signal Strength values measured by the mobile phone with a radio map of RSSI Recorded during the calibration phase, arise as the best methods for indoor scenarios. However, these systems are also affected by other problems, for example the important load of tasks to be done to have the system ready to work, and the variability of the channel. In front of them, in this paper we present two original contributions to improve the fingerprinting methods based systems. The first one of these contributions describes a method for find, in a simple way, the basic characteristics of the system at the level of the number of samples needed to create the radio map inside the referenced fingerprint, and also by the minimum number of radio frequency emitters that are needed to be deployed; and both of them coming from some initial requirements for the system related to the error and accuracy in positioning wanted to have, which it will be joined the data corresponding to the dimensions and physical reality of the environment. Thus, some initial guidelines when dimensioning the system will be in place, and the negative effects into the cost or into the performance of the whole system, due to an inefficient deployment of the radio frequency emitters and of the radio map capture points, will be minimized. The second contribution increases the resulting accuracy of the system when working in real time, thanks to a technique of automatic recalibration of the power measurements stored in the radio map. This technique takes into account the continuous measures reported by a few static reference points, strategically distributed in the environment, to recalculate and update the measurements stored into the map radio. An additional benefit at operational level of such technique, is the extension of the reliable time of the system, decreasing the periodicity required to recapture the radio map within full measurements. The above mentioned improvements are directly applicable to improve indoor positioning mechanisms based on voice and data wireless communications infrastructure. From there, that improvement will be also extensible and applicable to location services (personal knowledge of the location where oneself is), monitoring (knowledge by other people of your location) and monitoring (prolonged monitoring over time) as all of them are based in a correct positioning for proper performance.
Resumo:
El planteamiento inicial de este proyecto surge debido a que hay personas con discapacidad cognitiva que se desorientan con mucha facilidad en espacios interiores. Para guiar a esas personas no se pueden usar los sistemas basados en GPS que se utilizan hoy en día en vehículos, ya que estos sistemas no funcionan en lugares cerrados porque no reciben la señal de los satélites. Por consiguiente se ha propuesto una solución basada en otra tecnología para que estas personas, a través de su dispositivo móvil, puedan guiarse en un sitio cerrado. Este Trabajo de Fin de Grado parte inicialmente de un Practicum realizado en el semestre anterior, donde se investigó sobre posibles soluciones de balizas digitales (iBeacons) y se estudió la tecnología iBeacon para conocer la posición del móvil en un espacio cerrado. El principal problema que se encontró fue la falta de precisión a la hora de estimar la distancia (en metros) que hay entre baliza y dispositivo móvil. El objetivo para este trabajo de fin de grado ha sido primeramente resolver el problema comentado anteriormente y una vez resuelto, implementar un prototipo móvil para el sistema operativo Android de un sistema de orientación en espacios interiores para personas con discapacidad cognitiva. Este prototipo ha sido implementado ayudándose de balizas digitales (iBeacons) y utilizando el método de trilateración para conocer la posición del usuario en un sitio cerrado. Además se han aprovechado los sensores (acelerómetro y sensor magnético terrestre) del dispositivo móvil como refuerzo de posicionamiento y para seguir de forma más precisa el movimiento del usuario. En el prototipo actual no se han dedicado recursos a diseñar una interacción fácil para personas con discapacidad cognitiva, debido a que su principal objetivo ha sido evaluar el funcionamiento de las balizas y las posibilidades del sistema de orientación. El resultado final de este TFG es incorporar una serie de luces asociadas a cada una de las balizas que ayuden al usuario a orientarse con mayor facilidad.---ABSTRACT---The initial approach of this project arises because there are people with cognitive disabilities who become disoriented in closed sites. To guide these people it cannot be used GPS, because this system does not work in closed sites because it does not receive the satellite signals. Therefore, it has proposed a solution based on another technology so that these people, through their smartphone, can be guided in a closed site. This final degree project comes from a Practicum made in the previous semester, where possible solutions about iBeacons were investigated and the iBeacon technology was studied too. All this, to know the mobile position in a closed site. The main problem encountered was the lack of precision to calculate the distance between a mobile phone and a beacon. The first objective has been to solve distance problem mentioned above, once resolved it has implemented a prototype, which consists in a guidance system in closed sites for a people with cognitive disabilities. This prototype has been implemented with beacons and trilateration to know user position in a closed site. In addition, mobile phone sensors have been used to follow user movement. In the current prototype, the main objective has been evaluate iBeacons performance and the guidance system. The result of this TFG is to incorporate a series of lights associated with each of the beacons to make easier the orientation.
Resumo:
Este proyecto fin de carrera trata de mejorar los sistemas actuales de control en la visualización de diapositivas. La solución adoptada constará de un sistema con modelo cliente-servidor. El servidor formado por un mini ordenador, en este caso una Raspberry Pi, que estará conectado al proyector de video. Este servidor se mantendrá a la espera de recibir una conexión entrante vía Bluetooth. Una vez se realice la conexión interpretará los comandos mandados por el cliente a través de una API con formato JSON y realizará las acciones indicadas para el control de la presentación. El cliente será una aplicación móvil para dispositivos Android. A través de ella el profesor accederá al servidor escaneando un código QR que será proyectado y una vez conectado enviará los comandos de control de la presentación, tales como abrir una presentación, avanzar y retroceder diapositiva, etc. La solución final deberá ser eficiente, sencilla de utilizar y con un bajo coste para resultar atractiva y ser así útil en el mundo real. Para ello se contará con valores añadidos como el poder iniciar la presentación desde el dispositivo móvil, el mostrar las notas de la diapositiva actual o contar con un temporizador para permitir un mejor control sobre el tiempo disponible para la presentación. ABSTRACT. This final project pursues the improvement of the current presentation control systems. The solution it provides is based on a server-client architecture. The server will be a mini PC, a Raspberry Pi model in this case, that will be connected to a video projector or a screen monitor. This server will remain idle waiting for an incoming Bluetooth connection. Once the connection is accepted the server will parse the commands sent by the client through a JSON API and will execute them accordingly to control the system. The client we decided to develop is an Android application. The speaker will be able to connect with the server by scanning a QR code that will be generated and displayed into the projector or screen monitor. Once the connection is accepted the client will sent the commands to control the slides, such as opening a presentation, move forward and backwards, etc. The adopted solution must be efficient, easy to use and with low cost to be appealing and useful to the real world. To accomplish the task this project will count with improvements over the current systems, such as the possibility to open a presentation from the smartphone, the visualization of the current slide notes from the mobile phone and a countdown timer to have a better control over the available time for the presentation.