19 resultados para Mobile Spatial Interaction
Resumo:
In the last decade, multi-sensor data fusion has become a broadly demanded discipline to achieve advanced solutions that can be applied in many real world situations, either civil or military. In Defence,accurate detection of all target objects is fundamental to maintaining situational awareness, to locating threats in the battlefield and to identifying and protecting strategically own forces. Civil applications, such as traffic monitoring, have similar requirements in terms of object detection and reliable identification of incidents in order to ensure safety of road users. Thanks to the appropriate data fusion technique, we can give these systems the power to exploit automatically all relevant information from multiple sources to face for instance mission needs or assess daily supervision operations. This paper focuses on its application to active vehicle monitoring in a particular area of high density traffic, and how it is redirecting the research activities being carried out in the computer vision, signal processing and machine learning fields for improving the effectiveness of detection and tracking in ground surveillance scenarios in general. Specifically, our system proposes fusion of data at a feature level which is extracted from a video camera and a laser scanner. In addition, a stochastic-based tracking which introduces some particle filters into the model to deal with uncertainty due to occlusions and improve the previous detection output is presented in this paper. It has been shown that this computer vision tracker contributes to detect objects even under poor visual information. Finally, in the same way that humans are able to analyze both temporal and spatial relations among items in the scene to associate them a meaning, once the targets objects have been correctly detected and tracked, it is desired that machines can provide a trustworthy description of what is happening in the scene under surveillance. Accomplishing so ambitious task requires a machine learning-based hierarchic architecture able to extract and analyse behaviours at different abstraction levels. A real experimental testbed has been implemented for the evaluation of the proposed modular system. Such scenario is a closed circuit where real traffic situations can be simulated. First results have shown the strength of the proposed system.
Resumo:
Cross-platform development frameworks for mobile applications promise important advantages in cost cuttings and easy maintenance, posing as a very good option for organizations interested in the design of mobile applications for several platforms. Given that platform conventions are especially important for the User eXperience (UX) of mobile applications, the usage of a framework where the same code defines the behavior of the app in different platforms could have a negative impact in the UX. This paper describes a study where two independent teams have designed two different versions of a mobile application, one using a framework that generates Android and iOS versions automatically, and another team using native tools. The alternative versions for each platform have been evaluated with 37 users with a combination of a laboratory usability test and a longitudinal study. The results show that differences are minimal in the Android platform, but in iOS, even if a reasonably good UX can be obtained with the usage of this framework by an UX-conscious design team, a higher level of UX can be obtained directly developing with a native tool.
Resumo:
Usability guidelines are a useful tool for the developers to improve interaction with systems. It includes knowledge of different disciplines related to usability and provides solutions and best practices to achieve the objectives of usability. Heuristic evaluation is one of the methods most widely used to evaluate and user interfaces. The objective of this study is to enrich the process of heuristic evaluation with the design guidelines focusing it on the evaluation of applications for mobile devices. As well as generate a homogeneous classification of guidelines content, in order to help that from design and development process, be included solutions and good practices provided by the guidelines. In order to achieve the objectives of this work, it is provides a method for generating heuristics for mobile applications, with which four applications were evaluated, and a web tool has also been developed that allows access to the content of the guidelines using the homogeneous classification of guidelines content. The results showed the ease and utility of performing heuristic evaluations using a set of heuristics focused on mobile applications.
Resumo:
The aim of this Master Thesis is the analysis, design and development of a robust and reliable Human-Computer Interaction interface, based on visual hand-gesture recognition. The implementation of the required functions is oriented to the simulation of a classical hardware interaction device: the mouse, by recognizing a specific hand-gesture vocabulary in color video sequences. For this purpose, a prototype of a hand-gesture recognition system has been designed and implemented, which is composed of three stages: detection, tracking and recognition. This system is based on machine learning methods and pattern recognition techniques, which have been integrated together with other image processing approaches to get a high recognition accuracy and a low computational cost. Regarding pattern recongition techniques, several algorithms and strategies have been designed and implemented, which are applicable to color images and video sequences. The design of these algorithms has the purpose of extracting spatial and spatio-temporal features from static and dynamic hand gestures, in order to identify them in a robust and reliable way. Finally, a visual database containing the necessary vocabulary of gestures for interacting with the computer has been created.