22 resultados para Mechanical Resistance
Resumo:
The mechanical behavior of three tungsten (W) alloys with vanadium (V) and lanthana (La2O3) additions (W–4%V, W–1%La2O3, W–4%V–1%La2O3) processed by hot isostatic pressing (HIP) have been compared with pure-W to analyze the influence of the dopants. Mechanical characterization was performed by three point bending (TPB) tests in an oxidizing air atmosphere and temperature range between 77 (immersion tests in liquid nitrogen) and 1273 K, through which the fracture toughness, flexural strength, and yield strength as function of temperature were obtained. Results show that the V and La2O3 additions improve the mechanical properties and oxidation behavior, respectively. Furthermore, a synergistic effect of both dopants results in an extraordinary increase of the flexure strength, fracture toughness and resistance to oxidation compared to pure-W, especially at higher temperatures. In addition, a new experimental method was developed to obtain a very small notch tip radius (around 5–7 μm) and much more similar to a crack through the use of a new machined notch. The fracture toughness results were lower than those obtained with traditional machining of the notch, which can be explained with electron microscopy, observations of deformation in the rear part of the notch tip. Finally, scanning electron microscopy (SEM) examination of the microstructure and fracture surfaces was used to determine and analyze the relationship between the macroscopic mechanical properties and the micromechanisms of failure involved, depending on the temperature and the dispersion of the alloy.
Resumo:
Long-length ultrafine-grained (UFG) Ti rods are produced by equal-channel angular pressing via the conform scheme (ECAP-C) at 200 °C, which is followed by drawing at 200 °C. The evolution of microstructure, macrotexture, and mechanical properties (yield strength, ultimate tensile strength, failure stress, uniform elongation, elongation to failure) of pure Ti during this thermo-mechanical processing is studied. Special attention is also paid to the effect of microstructure on the mechanical behavior of the material after macrolocalization of plastic flow. The number of ECAP-C passes varies in the range of 1–10. The microstructure is more refined with increasing number of ECAP-C passes. Formation of homogeneous microstructure with a grain/subgrain size of 200 nm and its saturation after 6 ECAP-C passes are observed. Strength properties increase with increasing number of ECAP passes and saturate after 6 ECAP-C passes to a yield strength of 973 MPa, an ultimate tensile strength of 1035 MPa, and a true failure stress of 1400 MPa (from 625, 750, and 1150 MPa in the as-received condition). The true strain at failure failure decreases after ECAP-C processing. The reduction of area and true strain to failure values do not decrease after ECAP-C processing. The sample after 6 ECAP-C passes is subjected to drawing at 200¯C resulting in reduction of a grain/subgrain size to 150 nm, formation of (10 1¯0) fiber texture with respect to the rod axis, and further increase of the yield strength up to 1190 MPa, the ultimate tensile strength up to 1230 MPa and the true failure stress up to 1600 MPa. It is demonstrated that UFG CP Ti has low resistance to macrolocalization of plastic deformation and high resistance to crack formation after necking.
Resumo:
This investigation reports on a comparative study of the mechanical behavior at different temperatures of three different alkali-activated fly ash pastes chemically activated using sodium silicate. A control Portland cement (OPC) was used as a reference. In an attempt to simulate the conditions prevailing in the event of accidental fire, post-thermal mechanical tests were performed to determine the residual strength. It has therefore been established that FA based cements can be fabricated for construction purposes and these materials have great potential for fire resistance applications.
Resumo:
Engineering of devices and systems such as magnets, fault current limiters or cables, based on High Temperature Superconducting wires requires a deep characterization of the possible degradation of their properties by handling at room temperature as well as during the service life thus establishing the limits for building up functional devices and systems. In the present work we report our study regarding the mechanical behavior of spliced joints between commercial HTS coated conductors based on YBCO at room temperature and service temperature, 77 K. Tensile tests under axial stress and the evolution of the critical current and the electric resistance of the joints have been measured. The complete strain contour for the tape and the joint has been obtained by using Digital Image Correlation. Also, tensile tests under external magnetic field have been performed and the effect of the applied field on the critical current and the electric resistance of the joints has been studied. Finally, a preliminary numerical study by means of Finite Element Method (FEM) of the mechanical behavior of the joints between commercial HTS is presented.
Resumo:
Engineering of devices and systems such as magnets, fault current limiters or cables, based on High Temperature Superconducting wires requires a deep characterization of the possible degradation of their properties by handling at room temperature as well as during the service life thus establishing the limits for building up functional devices and systems. In the present work we report our study regarding the mechanical behavior of spliced joints between commercial HTS coated conductors based on YBCO at room temperature and service temperature, 77 K. Tensile tests under axial stress and the evolution of the critical current and the electric resistance of the joints have been measured. The complete strain contour for the tape and the joints has been obtained by using Digital Image Correlation. Also, tensile tests under external magnetic field have been performed and the effect of the applied field on the critical current and the electric resistance of the joints has been studied. Additionally, fatigue tests under constant cyclic stress and loading-unloading ramps have been carried out in order to evaluate the electromechanical behavior of the joints and the effect of maximum applied stress on the critical current. Finally, a preliminary numerical study by means of the Finite Element Method (FEM) of the electromechanical behavior of the joints between commercial HTS is presented.
Resumo:
El hormigón autocompactante (HAC) es una nueva tipología de hormigón o material compuesto base cemento que se caracteriza por ser capaz de fluir en el interior del encofrado o molde, llenándolo de forma natural, pasando entre las barras de armadura y consolidándose únicamente bajo la acción de su peso propio, sin ayuda de medios de compactación externos, y sin que se produzca segregación de sus componentes. Debido a sus propiedades frescas (capacidad de relleno, capacidad de paso, y resistencia a la segregación), el HAC contribuye de forma significativa a mejorar la calidad de las estructuras así como a abrir nuevos campos de aplicación del hormigón. Por otra parte, la utilidad del hormigón reforzado con fibras de acero (HRFA) es hoy en día incuestionable debido a la mejora significativa de sus propiedades mecánicas tales como resistencia a tracción, tenacidad, resistencia al impacto o su capacidad para absorber energía. Comparado con el HRFA, el hormigón autocompactante reforzado con fibras de acero (HACRFA) presenta como ventaja una mayor fluidez y cohesión ofreciendo, además de unas buenas propiedades mecánicas, importantes ventajas en relación con su puesta en obra. El objetivo global de esta tesis doctoral es el desarrollo de nuevas soluciones estructurales utilizando materiales compuestos base cemento autocompactantes reforzados con fibras de acero. La tesis presenta una nueva forma de resolver el problema basándose en el concepto de los materiales gradiente funcionales (MGF) o materiales con función gradiente (MFG) con el fin de distribuir de forma eficiente las fibras en la sección estructural. Para ello, parte del HAC se sustituye por HACRFA formando capas que presentan una transición gradual entre las mismas con el fin de obtener secciones robustas y exentas de tensiones entre capas con el fin de aplicar el concepto “MGF-laminados” a elementos estructurales tales como vigas, columnas, losas, etc. El proceso incluye asimismo el propio método de fabricación que, basado en la tecnología HAC, permite el desarrollo de interfases delgadas y robustas entre capas (1-3 mm) gracias a las propiedades reológicas del material. Para alcanzar dichos objetivos se ha llevado a cabo un amplio programa experimental cuyas etapas principales son las siguientes: • Definir y desarrollar un método de diseño que permita caracterizar de forma adecuada las propiedades mecánicas de la “interfase”. Esta primera fase experimental incluye: o las consideraciones generales del propio método de fabricación basado en el concepto de fabricación de materiales gradiente funcionales denominado “reología y gravedad”, o las consideraciones específicas del método de caracterización, o la caracterización de la “interfase”. • Estudiar el comportamiento mecánico sobre elementos estructurales, utilizando distintas configuraciones de MGF-laminado frente a acciones tanto estáticas como dinámicas con el fin de comprobar la viabilidad del material para ser usado en elementos estructurales tales como vigas, placas, pilares, etc. Los resultados indican la viabilidad de la metodología de fabricación adoptada, así como, las ventajas tanto estructurales como en reducción de costes de las soluciones laminadas propuestas. Es importante destacar la mejora en términos de resistencia a flexión, compresión o impacto del hormigón autocompactante gradiente funcional en comparación con soluciones de HACRFA monolíticos inclusos con un volumen neto de fibras (Vf) doble o superior. Self-compacting concrete (SCC) is an important advance in the concrete technology in the last decades. It is a new type of high performance concrete with the ability of flowing under its own weight and without the need of vibrations. Due to its specific fresh or rheological properties, such as filling ability, passing ability and segregation resistance, SCC may contribute to a significant improvement of the quality of concrete structures and open up new field for the application of concrete. On the other hand, the usefulness of steel fibre-reinforced concrete (SFRC) in civil engineering applications is unquestionable. SFRC can improve significantly the hardened mechanical properties such as tensile strength, impact resistance, toughness and energy absorption capacity. Compared to SFRC, self-compacting steel fibre-reinforced concrete (SCSFRC) is a relatively new type of concrete with high flowability and good cohesiveness. SCSFRC offers very attractive economical and technical benefits thanks to SCC rheological properties, which can be further extended, when combined with SFRC for improving their mechanical characteristics. However, for the different concrete structural elements, a single concrete mix is selected without an attempt to adapt the diverse fibre-reinforced concretes to the stress-strain sectional properly. This thesis focused on the development of high performance cement-based structural composites made of SCC with and without steel fibres, and their applications for enhanced mechanical properties in front of different types of load and pattern configurations. It presents a new direction for tackling the mechanical problem. The approach adopted is based on the concept of functionally graded cementitious composite (FGCC) where part of the plain SCC is strategically replaced by SCSFRC in order to obtain laminated functionally graded self-compacting cementitious composites, laminated-FGSCC, in single structural elements as beams, columns, slabs, etc. The approach also involves a most suitable casting method, which uses SCC technology to eliminate the potential sharp interlayer while easily forming a robust and regular reproducible graded interlayer of 1-3 mm by controlling the rheology of the mixes and using gravity at the same time to encourage the use of the powerful concept for designing more performance suitable and cost-efficient structural systems. To reach the challenging aim, a wide experimental programme has been carried out involving two main steps: • The definition and development of a novel methodology designed for the characterization of the main parameter associated to the interface- or laminated-FGSCC solutions: the graded interlayer. Work of this first part includes: o the design considerations of the innovative (in the field of concrete) production method based on “rheology and gravity” for producing FG-SCSFRC or as named in the thesis FGSCC, casting process and elements, o the design of a specific testing methodology, o the characterization of the interface-FGSCC by using the so designed testing methodology. • The characterization of the different medium size FGSCC samples under different static and dynamic loads patterns for exploring their possibilities to be used for structural elements as beams, columns, slabs, etc. The results revealed the efficiency of the manufacturing methodology, which allow creating robust structural sections, as well as the feasibility and cost effectiveness of the proposed FGSCC solutions for different structural uses. It is noticeable to say the improvement in terms of flexural, compressive or impact loads’ responses of the different FGSCC in front of equal strength class SCSFRC bulk elements with at least the double of overall net fibre volume fraction (Vf).
Resumo:
Here we show that potassium-doped tungsten foil should be preferred to pure tungsten foil when considering tungsten laminate pipes for structural divertor applications. Potassium-doped tungsten materials are well known from the bulb industry and show an enhanced creep and recrystallization behaviour that can be explained by the formation of potassium-filled bubbles that are surrounding the elongated grains, leading to an interlocking of the microstructure. In this way, the ultra-fine grained (UFG) microstructure of tungsten foil can be stabilized and with it the extraordinary mechanical properties of the foil in terms of ductility, toughness, brittle-to-ductile transition, and radiation resistance. In this paper we show the results of three-point bending tests performed at room temperature on annealed pure tungsten and potassium-doped tungsten foils (800, 900, 1000, 1100, 1200, 1300, 1400, 1600, 1800, 2000, 2200, and 2400 °C for 1 h in vacuum). The microstructural assessment covers the measurement of the hardness and analyses of fractured surfaces as well as a comparison of the microstructure by optical microscopy. The results show that there is a positive effect of potassium-doped tungsten foils compared to pure tungsten foil and demonstrate the potential of the doped foil