45 resultados para Machine vision and image processing


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The structural connectivity of the brain is considered to encode species-wise and subject-wise patterns that will unlock large areas of understanding of the human brain. Currently, diffusion MRI of the living brain enables to map the microstructure of tissue, allowing to track the pathways of fiber bundles connecting the cortical regions across the brain. These bundles are summarized in a network representation called connectome that is analyzed using graph theory. The extraction of the connectome from diffusion MRI requires a large processing flow including image enhancement, reconstruction, segmentation, registration, diffusion tracking, etc. Although a concerted effort has been devoted to the definition of standard pipelines for the connectome extraction, it is still crucial to define quality assessment protocols of these workflows. The definition of quality control protocols is hindered by the complexity of the pipelines under test and the absolute lack of gold-standards for diffusion MRI data. Here we characterize the impact on structural connectivity workflows of the geometrical deformation typically shown by diffusion MRI data due to the inhomogeneity of magnetic susceptibility across the imaged object. We propose an evaluation framework to compare the existing methodologies to correct for these artifacts including whole-brain realistic phantoms. Additionally, we design and implement an image segmentation and registration method to avoid performing the correction task and to enable processing in the native space of diffusion data. We release PySDCev, an evaluation framework for the quality control of connectivity pipelines, specialized in the study of susceptibility-derived distortions. In this context, we propose Diffantom, a whole-brain phantom that provides a solution to the lack of gold-standard data. The three correction methodologies under comparison performed reasonably, and it is difficult to determine which method is more advisable. We demonstrate that susceptibility-derived correction is necessary to increase the sensitivity of connectivity pipelines, at the cost of specificity. Finally, with the registration and segmentation tool called regseg we demonstrate how the problem of susceptibility-derived distortion can be overcome allowing data to be used in their original coordinates. This is crucial to increase the sensitivity of the whole pipeline without any loss in specificity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The reconstruction of the cell lineage tree of early zebrafish embryogenesis requires the use of in-vivo microscopy imaging and image processing strategies. Second (SHG) and third harmonic generation (THG) microscopy observations in unstained zebrafish embryos allows to detect cell divisions and cell membranes from 1-cell to 1K-cell stage. In this article, we present an ad-hoc image processing pipeline for cell tracking and cell membranes segmentation enabling the reconstruction of the early zebrafish cell lineage tree until the 1K-cell stage. This methodology has been used to obtain digital zebrafish embryos allowing to generate a quantitative description of early zebrafish embryogenesis with minute temporal accuracy and μm spatial resolution

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The increase of multimedia services delivered over packet-based networks has entailed greater quality expectations of the end-users. This has led to an intensive research on techniques for evaluating the quality of experience perceived by the viewers of audiovisual content, considering the different degradations that it could suffer along the broadcasting system. In this paper, a comprehensive study of the impact of transmission errors affecting video and audio in IPTV is presented. With this aim, subjective assessment tests were carried out proposing a novel methodology trying to keep as close as possible home environment viewing conditions. Also 3DTV content in side-by-side format has been used in the experiments to compare the impact of the degradations. The results provide a better understanding of the effects of transmission errors, and show that the QoE related to the first approach of 3DTV is acceptable, but the visual discomfort that it causes should be reduced.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper discusses a novel hybrid approach for text categorization that combines a machine learning algorithm, which provides a base model trained with a labeled corpus, with a rule-based expert system, which is used to improve the results provided by the previous classifier, by filtering false positives and dealing with false negatives. The main advantage is that the system can be easily fine-tuned by adding specific rules for those noisy or conflicting categories that have not been successfully trained. We also describe an implementation based on k-Nearest Neighbor and a simple rule language to express lists of positive, negative and relevant (multiword) terms appearing in the input text. The system is evaluated in several scenarios, including the popular Reuters-21578 news corpus for comparison to other approaches, and categorization using IPTC metadata, EUROVOC thesaurus and others. Results show that this approach achieves a precision that is comparable to top ranked methods, with the added value that it does not require a demanding human expert workload to train

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The implementation of abstract machines involves complex decisions regarding, e.g., data representation, opcodes, or instruction specialization levéis, all of which affect the final performance of the emulator and the size of the bytecode programs in ways that are often difficult to foresee. Besides, studying alternatives by implementing abstract machine variants is a time-consuming and error-prone task because of the level of complexity and optimization of competitive implementations, which makes them generally difficult to understand, maintain, and modify. This also makes it hard to genérate specific implementations for particular purposes. To ameliorate those problems, we propose a systematic approach to the automatic generation of implementations of abstract machines. Different parts of their definition (e.g., the instruction set or the infernal data and bytecode representation) are kept sepárate and automatically assembled in the generation process. Alternative versions of the abstract machine are therefore easier to produce, and variants of their implementation can be created mechanically, with specific characteristics for a particular application if necessary. We illustrate the practicality of the approach by reporting on an implementation of a generator of production-quality WAMs which are specialized for executing a particular fixed (set of) program(s). The experimental results show that the approach is effective in reducing emulator size.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Laparoscopic instrument tracking systems are an essential component in image-guided interventions and offer new possibilities to improve and automate objective assessment methods of surgical skills. In this study we present our system design to apply a third generation optical pose tracker (Micron- Tracker®) to laparoscopic practice. A technical evaluation of this design is performed in order to analyze its accuracy in computing the laparoscopic instrument tip position. Results show a stable fluctuation error over the entire analyzed workspace. The relative position errors are 1.776±1.675 mm, 1.817±1.762 mm, 1.854±1.740 mm, 2.455±2.164 mm, 2.545±2.496 mm, 2.764±2.342 mm, 2.512±2.493 mm for distances of 50, 100, 150, 200, 250, 300, and 350 mm, respectively. The accumulated distance error increases with the measured distance. The instrument inclination covered by the system is high, from 90 to 7.5 degrees. The system reports a low positional accuracy for the instrument tip.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The production and industry of paprika present several problems related to quality and to production costs. One of the main difficulties is to obtain an objective and quick method for predicting quality. Quality in powder paprika involves: quantity of carotenoids and the appearance and stability of colour. The method used currently for determining quality is the measurement of absorbance at 460 nm wavelength, of an acetone extract of carotenoids, but there is no information about the appearance of the paprika or the stability of its colour with time. " Another important problem is the presence of mixtures of powdered paprika produced in the Spanish region of "La Vera", which has a peculiar way of production, with a high '' quality and price, with other products of lower quality. It is necessary to obtain methods which are able to detect the fraud.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Laparoscopic instrument tracking systems are a key element in image-guided interventions, which requires high accuracy to be used in a real surgical scenario. In addition, these systems are a suitable option for objective assessment of laparoscopic technical skills based on instrument motion analysis. This study presents a new approach that improves the accuracy of a previously presented system, which applies an optical pose tracking system to laparoscopic practice. A design enhancement of the artificial markers placed on the laparoscopic instrument as well as an improvement of the calibration process are presented as a means to achieve more accurate results. A technical evaluation has been performed in order to compare the accuracy between the previous design and the new approach. Results show a remarkable improvement in the fluctuation error throughout the measurement platform. Moreover, the accumulated distance error and the inclination error have been improved. The tilt range covered by the system is the same for both approaches, from 90º to 7.5º. The relative position error is better for the new approach mainly at close distances to the camera system

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the main concerns of evolvable and adaptive systems is the need of a training mechanism, which is normally done by using a training reference and a test input. The fitness function to be optimized during the evolution (training) phase is obtained by comparing the output of the candidate systems against the reference. The adaptivity that this type of systems may provide by re-evolving during operation is especially important for applications with runtime variable conditions. However, fully automated self-adaptivity poses additional problems. For instance, in some cases, it is not possible to have such reference, because the changes in the environment conditions are unknown, so it becomes difficult to autonomously identify which problem requires to be solved, and hence, what conditions should be representative for an adequate re-evolution. In this paper, a solution to solve this dependency is presented and analyzed. The system consists of an image filter application mapped on an evolvable hardware platform, able to evolve using two consecutive frames from a camera as both test and reference images. The system is entirely mapped in an FPGA, and native dynamic and partial reconfiguration is used for evolution. It is also shown that using such images, both of them being noisy, as input and reference images in the evolution phase of the system is equivalent or even better than evolving the filter with offline images. The combination of both techniques results in the completely autonomous, noise type/level agnostic filtering system without reference image requirement described along the paper.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An innovative background modeling technique that is able to accurately segment foreground regions in RGB-D imagery (RGB plus depth) has been presented in this paper. The technique is based on a Bayesian framework that efficiently fuses different sources of information to segment the foreground. In particular, the final segmentation is obtained by considering a prediction of the foreground regions, carried out by a novel Bayesian Network with a depth-based dynamic model, and, by considering two independent depth and color-based mixture of Gaussians background models. The efficient Bayesian combination of all these data reduces the noise and uncertainties introduced by the color and depth features and the corresponding models. As a result, more compact segmentations, and refined foreground object silhouettes are obtained. Experimental results with different databases suggest that the proposed technique outperforms existing state-of-the-art algorithms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A more natural, intuitive, user-friendly, and less intrusive Human–Computer interface for controlling an application by executing hand gestures is presented. For this purpose, a robust vision-based hand-gesture recognition system has been developed, and a new database has been created to test it. The system is divided into three stages: detection, tracking, and recognition. The detection stage searches in every frame of a video sequence potential hand poses using a binary Support Vector Machine classifier and Local Binary Patterns as feature vectors. These detections are employed as input of a tracker to generate a spatio-temporal trajectory of hand poses. Finally, the recognition stage segments a spatio-temporal volume of data using the obtained trajectories, and compute a video descriptor called Volumetric Spatiograms of Local Binary Patterns (VS-LBP), which is delivered to a bank of SVM classifiers to perform the gesture recognition. The VS-LBP is a novel video descriptor that constitutes one of the most important contributions of the paper, which is able to provide much richer spatio-temporal information than other existing approaches in the state of the art with a manageable computational cost. Excellent results have been obtained outperforming other approaches of the state of the art.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present an innovative system to encode and transmit textured multi-resolution 3D meshes in a progressive way, with no need to send several texture images, one for each mesh LOD (Level Of Detail). All texture LODs are created from the finest one (associated to the finest mesh), but can be re- constructed progressively from the coarsest thanks to refinement images calculated in the encoding process, and transmitted only if needed. This allows us to adjust the LOD/quality of both 3D mesh and texture according to the rendering power of the device that will display them, and to the network capacity. Additionally, we achieve big savings in data transmission by avoiding altogether texture coordinates, which are generated automatically thanks to an unwrapping system agreed upon by both encoder and decoder.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study a cognitive radio scenario in which the network of sec- ondary users wishes to identify which primary user, if any, is trans- mitting. To achieve this, the nodes will rely on some form of location information. In our previous work we proposed two fully distributed algorithms for this task, with and without a pre-detection step, using propagation parameters as the only source of location information. In a real distributed deployment, each node must estimate its own po- sition and/or propagation parameters. Hence, in this work we study the effect of uncertainty, or error in these estimates on the proposed distributed identification algorithms. We show that the pre-detection step significantly increases robustness against uncertainty in nodes' locations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

En este proyecto se ha desarrollado un código de MATLAB para el procesamiento de imágenes tomográficas 3D, de muestras de asfalto de carreteras en Polonia. Estas imágenes en 3D han sido tomadas por un equipo de investigación de la Universidad Tecnológica de Lodz (LUT). El objetivo de este proyecto es crear una herramienta que se pueda utilizar para estudiar las diferentes muestras de asfalto 3D y pueda servir para estudiar las pruebas de estrés que experimentan las muestras en el laboratorio. Con el objetivo final de encontrar soluciones a la degradación sufrida en las carreteras de Polonia, debido a diferentes causas, como son las condiciones meteorológicas. La degradación de las carreteras es un tema que se ha investigado desde hace muchos años, debido a la fuerte degradación causada por diferentes factores como son climáticos, la falta de mantenimiento o el tráfico excesivo en algunos casos. Es en Polonia, donde estos tres factores hacen que la composición de muchas carreteras se degrade rápidamente, sobre todo debido a las condiciones meteorológicas sufridas a lo largo del año, con temperaturas que van desde 30° C en verano a -20° C en invierno. Esto hace que la composición de las carreteras sufra mucho y el asfalto se levante, lo que aumenta los costos de mantenimiento y los accidentes de carretera. Este proyecto parte de la base de investigación que se lleva a cabo en la LUT, tratando de mejorar el análisis de las muestras de asfalto, por lo que se realizarán las pruebas de estrés y encontrar soluciones para mejorar el asfalto en las carreteras polacas. Esto disminuiría notablemente el costo de mantenimiento. A pesar de no entrar en aspectos muy técnicos sobre el asfalto y su composición, se ha necesitado realizar un estudio profundo sobre todas sus características, para crear un código capaz de obtener los mejores resultados. Por estas razones, se ha desarrollado en Matlab, los algoritmos que permiten el estudio de los especímenes 3D de asfalto. Se ha utilizado este software, ya que Matlab es una poderosa herramienta matemática que permite operar con matrices para realización de operaciones rápidamente, permitiendo desarrollar un código específico para el tratamiento y procesamiento de imágenes en 3D. Gracias a esta herramienta, estos algoritmos realizan procesos tales como, la segmentación de la imagen 3D, pre y post procesamiento de la imagen, filtrado o todo tipo de análisis microestructural de las muestras de asfalto que se están estudiando. El código presentado para la segmentación de las muestras de asfalto 3D es menos complejo en su diseño y desarrollo, debido a las herramientas de procesamiento de imágenes que incluye Matlab, que facilitan significativamente la tarea de programación, así como el método de segmentación utilizado. Respecto al código, este ha sido diseñado teniendo en cuenta el objetivo de facilitar el trabajo de análisis y estudio de las imágenes en 3D de las muestras de asfalto. Por lo tanto, el principal objetivo es el de crear una herramienta para el estudio de este código, por ello fue desarrollado para que pueda ser integrado en un entorno visual, de manera que sea más fácil y simple su utilización. Ese es el motivo por el cual todos estos algoritmos y funciones, que ha sido desarrolladas, se integrarán en una herramienta visual que se ha desarrollado con el GUIDE de Matlab. Esta herramienta ha sido creada en colaboración con Jorge Vega, y fue desarrollada en su proyecto final de carrera, cuyo título es: Segmentación microestructural de Imágenes en 3D de la muestra de asfalto utilizando Matlab. En esta herramienta se ha utilizado todo las funciones programadas en este proyecto, y tiene el objetivo de desarrollar una herramienta que permita crear un entorno gráfico intuitivo y de fácil uso para el estudio de las muestras de 3D de asfalto. Este proyecto se ha dividido en 4 capítulos, en un primer lugar estará la introducción, donde se presentarán los aspectos más importante que se va a componer el proyecto. En el segundo capítulo se presentarán todos los datos técnicos que se han tenido que estudiar para desarrollar la herramienta, entre los que cabe los tres temas más importantes que se han estudiado en este proyecto: materiales asfálticos, los principios de la tomografías 3D y el procesamiento de imágenes. Esta será la base para el tercer capítulo, que expondrá la metodología utilizada en la elaboración del código, con la explicación del entorno de trabajo utilizado en Matlab y todas las funciones de procesamiento de imágenes utilizadas. Además, se muestra todo el código desarrollado, así como una descripción teórica de los métodos utilizados para el pre-procesamiento y segmentación de las imagenes en 3D. En el capítulo 4, se mostrarán los resultados obtenidos en el estudio de una de las muestras de asfalto, y, finalmente, el último capítulo se basa en las conclusiones sobre el desarrollo de este proyecto. En este proyecto se ha llevado han realizado todos los puntos que se establecieron como punto de partida en el anteproyecto para crear la herramienta, a pesar de que se ha dejado para futuros proyectos nuevas posibilidades de este codigo, como por ejemplo, la detección automática de las diferentes regiones de una muestra de asfalto debido a su composición. Como se muestra en este proyecto, las técnicas de procesamiento de imágenes se utilizan cada vez más en multitud áreas, como pueden ser industriales o médicas. En consecuencia, este tipo de proyecto tiene multitud de posibilidades, y pudiendo ser la base para muchas nuevas aplicaciones que se puedan desarrollar en un futuro. Por último, se concluye que este proyecto ha contribuido a fortalecer las habilidades de programación, ampliando el conocimiento de Matlab y de la teoría de procesamiento de imágenes. Del mismo modo, este trabajo proporciona una base para el desarrollo de un proyecto más amplio cuyo alcance será una herramienta que puedas ser utilizada por el equipo de investigación de la Universidad Tecnológica de Lodz y en futuros proyectos. ABSTRACT In this project has been developed one code in MATLAB to process X-ray tomographic 3D images of asphalt specimens. These images 3D has been taken by a research team of the Lodz University of Technology (LUT). The aim of this project is to create a tool that can be used to study differents asphalt specimen and can be used to study them after stress tests undergoing the samples. With the final goal to find solutions to the degradation suffered roads in Poland due to differents causes, like weather conditions. The degradation of the roads is an issue that has been investigated many years ago, due to strong degradation suffered caused by various factors such as climate, poor maintenance or excessive traffic in some cases. It is in Poland where these three factors make the composition of many roads degrade rapidly, especially due to the weather conditions suffered along the year, with temperatures ranging from 30 o C in summer to -20 ° C in winter. This causes the roads suffers a lot and asphalt rises shortly after putting, increasing maintenance costs and road accident. This project part of the base that research is taking place at the LUT, in order to better analyze the asphalt specimens, they are tested for stress and find solutions to improve the asphalt on Polish roads. This would decrease remarkable maintenance cost. Although this project will not go into the technical aspect as asphalt and composition, but it has been required a deep study about all of its features, to create a code able to obtain the best results. For these reasons, there have been developed in Matlab, algorithms that allow the study of 3D specimens of asphalt. Matlab is a powerful mathematical tool, which allows arrays operate fastly, allowing to develop specific code for the treatment and processing of 3D images. Thus, these algorithms perform processes such as the multidimensional matrix sgementation, pre and post processing with the same filtering algorithms or microstructural analysis of asphalt specimen which being studied. All these algorithms and function that has been developed to be integrated into a visual tool which it be developed with the GUIDE of Matlab. This tool has been created in the project of Jorge Vega which name is: Microstructural segmentation of 3D images of asphalt specimen using Matlab engine. In this tool it has been used all the functions programmed in this project, and it has the aim to develop an easy and intuitive graphical environment for the study of 3D samples of asphalt. This project has been divided into 4 chapters plus the introduction, the second chapter introduces the state-of-the-art of the three of the most important topics that have been studied in this project: asphalt materials, principle of X-ray tomography and image processing. This will be the base for the third chapter, which will outline the methodology used in developing the code, explaining the working environment of Matlab and all the functions of processing images used. In addition, it will be shown all the developed code created, as well as a theoretical description of the methods used for preprocessing and 3D image segmentation. In Chapter 4 is shown the results obtained from the study of one of the specimens of asphalt, and finally the last chapter draws the conclusions regarding the development of this project.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Atrial fibrillation (AF) is a common heart disorder. One of the most prominent hypothesis about its initiation and maintenance considers multiple uncoordinated activation foci inside the atrium. However, the implicit assumption behind all the signal processing techniques used for AF, such as dominant frequency and organization analysis, is the existence of a single regular component in the observed signals. In this paper we take into account the existence of multiple foci, performing a spectral analysis to detect their number and frequencies. In order to obtain a cleaner signal on which the spectral analysis can be performed, we introduce sparsity-aware learning techniques to infer the spike trains corresponding to the activations. The good performance of the proposed algorithm is demonstrated both on synthetic and real data. RESUMEN. Algoritmo basado en técnicas de regresión dispersa para la extracción de las señales cardiacas en pacientes con fibrilación atrial (AF).