69 resultados para Lift (Aerodynamics)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents the design of a bat-like micro aerial vehicle with actuated morphing wings. NiTi shape memory alloys (SMAs) acting as artificial biceps and triceps muscles are used for mimicking the morphing wing mechanism of the bat flight apparatus. Our objective is twofold. Firstly, we have implemented a control architecture that allows an accurate and fast SMA actuation. This control makes use of the electrical resistance measurements of SMAs to adjust morphing wing motions. Secondly, the feasibility of using SMA actuation technology is evaluated for the application at hand. To this purpose, experiments are conducted to analyze the control performance in terms of nominal and overloaded operation modes of the SMAs. This analysis includes: (i) inertial forces regarding the stretchable wing membrane and aerodynamic loads, and (ii) uncertainties due to impact of airflow conditions over the resistance–motion relationship of SMAs. With the proposed control, morphing actuation speed can be increased up to 2.5 Hz, being sufficient to generate lift forces at a cruising speed of 5ms−1.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Transverse galloping is a type of aeroelastic instability characterised by large amplitude, low frequency oscillation of a structure in the direction normal to the mean wind direction. It normally appears in bodies with small stiffness and structural damping, provided the incident flow velocity is high enough. In the simplest approach transverse galloping can be considered as a one-degree-of-freedom oscillator subjected to aerodynamic forces, which in turn can be described by using a quasi-steady description. In this frame it has been demonstrated that hysteresis phenomena in transverse galloping is related to the existence of inflection points in the curve giving the dependence with the angle of attack of the aerodynamic coefficient normal to the incident flow. Aiming at experimentally checking such a relationship between these inflection points and hysteresis, wind tunnel experiments have been conducted. Experiments have been restricted to isosceles triangular cross-section bodies, whose galloping behaviour is well documented. Experimental results show that, according to theoretical predictions, hysteresis takes place at the angles of attack where there are inflection points in the lift coefficient curve, provided that the body is prone to gallop at these angles of attack.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The computation of the non-linear vibration dynamics of an aerodynamically unstable bladed-disk is a formidable numerical task, even for the simplified case of aerodynamic forces assumed to be linear. The nonlinear friction forces effectively couple dif- ferent travelling waves modes and, in order to properly elucidate the dynamics of the system, large time simulations are typically required to reach a final, saturated state. Despite of all the above complications, the output of the system (in the friction microslip regime) is basically a superposition of the linear aeroelastic un- stable travelling waves, which exhibit a slow time modulation that is much longer than the elastic oscillation period. This slow time modulation is due to both, the small aerodynamic effects and the small nonlinear friction forces, and it is crucial to deter- mine the final amplitude of the flutter vibration. In this presenta- tion we apply asymptotic techniques to obtain a new simplified model that captures the slow time dynamics of the amplitudes of the travelling waves. The resulting asymptotic model is very re- duced and extremely cheap to simulate, and it has the advantage that it gives precise information about the characteristics of the nonlinear friction models that actually play a role in the satura- tion of the vibration amplitude.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The range for airframe configurations available for UAS is as diverse as those used for manned aircraft and more since the commercial risk in trying unorthodox solutions is less for the UAS manufacturer. This is principally because the UAS airframes are usually much smaller than the manned aircraft and operators are less likely to have a bias against unconventional configurations. One of these unconventional configurations is the box-wing, which is an unconventional solution for the design of the new UAS generation. The existence of two wings separated in different planes that are, however, significantly close together, means that the aerodynamic analysis by theoretical or computational methods is a difficult task, due to the considerable interference existing. Considering the fact that the flight of most UAS takes place at low Reynolds numbers, it is necessary to study the aerodynamics of the box wing configuration by testing different models in a wind tunnel to be able to obtain reasonable results. In the present work, the study is enhanced by varying not only the sweepback angles of the two wings, but also their position along the models’ fuselage. Certain models have shown being more efficient than others, pointing out that certain relative positions of wing exists that can improve the aerodynamics efficiency of the box wing configuration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Strictly speaking, space related activities at the Escuela Técnica Superior de Ingenieros Aeronáuticos (ETSIA) begun in 1973, when Prof. Ignacio Da Riva got a contract from the European Space Agency (ESA) to compile a handbook on spacecraft thermal control. By the same time, ESA issued an announcement of opportunities offering to the European scientific community the possibility of perform microgravity relevant experiments on board space platform like the European orbital laboratory Spacelab. Prof. Da Riva proposed one of the few selected experiments dealing with fluid physics under microgravity conditions, later flown on Spacelab-1 mission in 1983. These two events were the starting point where Prof. Da Riva, full professor of Aerodynamics at ETSIA, nucleated a small group of young professors and students located at the Laboratorio de Aerodinámica y Mecánica de Fluidos (LAMF) of ETSIA. Such group was leaded by Prof. Da Riva since its creation till 1991, when Prof. Da Riva died, and it was the seed of the more recently created research institute for aerospace science and technology named "Ignacio Da Riva" (IDR) in his honour. In this communication space related activities performed either at LAMF or IDR during the last three decades are briefly described.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The computation of the non-linear vibration dynamics of an aerodynamically unstable bladed-disk is a formidable numerical task, even for the simplified case of aerodynamic forces assumed to be linear. The nonlinear friction forces effectively couple dif- ferent travelling waves modes and, in order to properly elucidate the dynamics of the system, large time simulations are typically required to reach a final, saturated state. Despite of all the above complications, the output of the system (in the friction microslip regime) is basically a superposition of the linear aeroelastic un- stable travelling waves, which exhibit a slow time modulation that is much longer than the elastic oscillation period. This slow time modulation is due to both, the small aerodynamic effects and the small nonlinear friction forces, and it is crucial to deter- mine the final amplitude of the flutter vibration. In this presenta- tion we apply asymptotic techniques to obtain a new simplified model that captures the slow time dynamics of the amplitudes of the travelling waves. The resulting asymptotic model is very re- duced and extremely cheap to simulate, and it has the advantage that it gives precise information about the characteristics of the nonlinear friction models that actually play a role in the satura- tion of the vibration amplitude.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Actualmente la agricultura cubana, por ser un sector estratégico en la economía del país, incorpora en su desarrollo y gestión las energías renovables como criterio básico para su viabilidad futura. Sin embargo existen un número de problemas que limitan el desarrollo de estas fuentes energéticas en Cuba, entre los que se encuentran el conocimiento incompleto de su potencial de utilización. Por esta razón, la presente investigación tiene como objetivo la maximización de la superficie regada de un cultivo dado y la determinación del volumen de regulación mínimo, usando una aerobomba tipo, en condiciones ambientales dadas. Se desarrolla una metodología para predecir la máxima potencialidad de las aerobombas para un sistema de riego localizado, basada en el cálculo del balance diario entre las necesidades de agua del cultivo y la disponibilidad de agua. Mediante un ejemplo que ilustra el uso de esta metodología en el cultivo de tomate (Solanum lycopersicum L. var. FL - 5) bajo invernadero en Ciego de Ávila, Cuba, se hace una descripción de los elementos de la instalación propuesta para el suministro de agua por parte de la aerobomba. Se estudiaron varios factores, tales como la serie de velocidad del viento trihoraria ( h V3 , m s-1) para un año medio de viento y para un año medio de poco viento; el caudal suministrado por la aerobomba en función de la altura de elevación ( H , m); y la evapotranspiración diaria del cultivo en invernadero en función de la fecha de siembra. A partir de los factores mencionados se determinaron los volúmenes de agua mensuales necesarios para el riego ( r D , m3 ha-1), la capacidad del depósito de almacenamiento ( dep. V , m3), así como las áreas máximas regables ( r A , ha) para cada variante. Los resultados muestran que el período óptimo de bombeo eólico para el riego del cultivo de tomate en invernadero bajo las condiciones ambientales estudiadas es de noviembre a febrero, y que los factores que más influyen en la superficie que se puede regar con el bombeo eólico son la fecha de plantación y el volumen de depósito. Abstract Currently Cuban agriculture, as a strategic sector in the economy of the country, incorporates in its development and renewable energy management as a basic criterion for its future viability. However, there are a number of problems that limit the development of these energy sources in Cuba, among which are the incomplete knowledge of their potential use. For this reason, this research aims at maximizing the irrigated area of a given culture and determination of minimum control volume, using a type Windpump in given environmental conditions. We develop a methodology to predict the maximum potential of windmills for irrigation system, based on the daily balance calculation between the crop water needs and water availability. Through an example that illustrates the use of this methodology in the cultivation of tomato (Solanum lycopersicum L. var. FL - 5) under greenhouse in Ciego de Avila, Cuba, is a description of the elements of the proposed facility to supply water from the windmill. We studied several factors such as the number of trihoraria wind speed ( h V3 , m s- 1) for an average wind year and an average year with little wind, the flow supplied by the windmill depending on the lift height ( H , m) and daily crop evapotranspiration in greenhouse based on planting date. From the above factors were determined monthly water volumes needed for irrigation ( r D , m3 ha-1), the storage tank capacity ( dep. V , m3) and peak areas irrigated ( r A , ha) for each variant. The results show that the optimal period wind pumping for irrigation of greenhouse tomato crop under the environmental conditions studied is from November to February, and that the factors that influence the surface that can be irrigated with wind pumping are planting date and amount of deposit.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

El propósito de esta tesis es la implementación de métodos eficientes de adaptación de mallas basados en ecuaciones adjuntas en el marco de discretizaciones de volúmenes finitos para mallas no estructuradas. La metodología basada en ecuaciones adjuntas optimiza la malla refinándola adecuadamente con el objetivo de mejorar la precisión de cálculo de un funcional de salida dado. El funcional suele ser una magnitud escalar de interés ingenieril obtenida por post-proceso de la solución, como por ejemplo, la resistencia o la sustentación aerodinámica. Usualmente, el método de adaptación adjunta está basado en una estimación a posteriori del error del funcional de salida mediante un promediado del residuo numérico con las variables adjuntas, “Dual Weighted Residual method” (DWR). Estas variables se obtienen de la solución del problema adjunto para el funcional seleccionado. El procedimiento habitual para introducir este método en códigos basados en discretizaciones de volúmenes finitos involucra la utilización de una malla auxiliar embebida obtenida por refinamiento uniforme de la malla inicial. El uso de esta malla implica un aumento significativo de los recursos computacionales (por ejemplo, en casos 3D el aumento de memoria requerida respecto a la que necesita el problema fluido inicial puede llegar a ser de un orden de magnitud). En esta tesis se propone un método alternativo basado en reformular la estimación del error del funcional en una malla auxiliar más basta y utilizar una técnica de estimación del error de truncación, denominada _ -estimation, para estimar los residuos que intervienen en el método DWR. Utilizando esta estimación del error se diseña un algoritmo de adaptación de mallas que conserva los ingredientes básicos de la adaptación adjunta estándar pero con un coste computacional asociado sensiblemente menor. La metodología de adaptación adjunta estándar y la propuesta en la tesis han sido introducidas en un código de volúmenes finitos utilizado habitualmente en la industria aeronáutica Europea. Se ha investigado la influencia de distintos parámetros numéricos que intervienen en el algoritmo. Finalmente, el método propuesto se compara con otras metodologías de adaptación de mallas y su eficiencia computacional se demuestra en una serie de casos representativos de interés aeronáutico. ABSTRACT The purpose of this thesis is the implementation of efficient grid adaptation methods based on the adjoint equations within the framework of finite volume methods (FVM) for unstructured grid solvers. The adjoint-based methodology aims at adapting grids to improve the accuracy of a functional output of interest, as for example, the aerodynamic drag or lift. The adjoint methodology is based on the a posteriori functional error estimation using the adjoint/dual-weighted residual method (DWR). In this method the error in a functional output can be directly related to local residual errors of the primal solution through the adjoint variables. These variables are obtained by solving the corresponding adjoint problem for the chosen functional. The common approach to introduce the DWR method within the FVM framework involves the use of an auxiliary embedded grid. The storage of this mesh demands high computational resources, i.e. over one order of magnitude increase in memory relative to the initial problem for 3D cases. In this thesis, an alternative methodology for adapting the grid is proposed. Specifically, the DWR approach for error estimation is re-formulated on a coarser mesh level using the _ -estimation method to approximate the truncation error. Then, an output-based adaptive algorithm is designed in such way that the basic ingredients of the standard adjoint method are retained but the computational cost is significantly reduced. The standard and the new proposed adjoint-based adaptive methodologies have been incorporated into a flow solver commonly used in the EU aeronautical industry. The influence of different numerical settings has been investigated. The proposed method has been compared against different grid adaptation approaches and the computational efficiency of the new method has been demonstrated on some representative aeronautical test cases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La influencia de la aerodinámica en el diseño de los trenes de alta velocidad, unida a la necesidad de resolver nuevos problemas surgidos con el aumento de la velocidad de circulación y la reducción de peso del vehículo, hace evidente el interés de plantear un estudio de optimización que aborde tales puntos. En este contexto, se presenta en esta tesis la optimización aerodinámica del testero de un tren de alta velocidad, llevada a cabo mediante el uso de métodos de optimización avanzados. Entre estos métodos, se ha elegido aquí a los algoritmos genéticos y al método adjunto como las herramientas para llevar a cabo dicha optimización. La base conceptual, las características y la implementación de los mismos se detalla a lo largo de la tesis, permitiendo entender los motivos de su elección, y las consecuencias, en términos de ventajas y desventajas que cada uno de ellos implican. El uso de los algorimos genéticos implica a su vez la necesidad de una parametrización geométrica de los candidatos a óptimo y la generación de un modelo aproximado que complementa al método de optimización. Estos puntos se describen de modo particular en el primer bloque de la tesis, enfocada a la metodología seguida en este estudio. El segundo bloque se centra en la aplicación de los métodos a fin de optimizar el comportamiento aerodinámico del tren en distintos escenarios. Estos escenarios engloban los casos más comunes y también algunos de los más exigentes a los que hace frente un tren de alta velocidad: circulación en campo abierto con viento frontal o viento lateral, y entrada en túnel. Considerando el caso de viento frontal en campo abierto, los dos métodos han sido aplicados, permitiendo una comparación de las diferentes metodologías, así como el coste computacional asociado a cada uno, y la minimización de la resistencia aerodinámica conseguida en esa optimización. La posibilidad de evitar parametrizar la geometría y, por tanto, reducir el coste computacional del proceso de optimización es la característica más significativa de los métodos adjuntos, mientras que en el caso de los algoritmos genéticos se destaca la simplicidad y capacidad de encontrar un óptimo global en un espacio de diseño multi-modal o de resolver problemas multi-objetivo. El caso de viento lateral en campo abierto considera nuevamente los dos métoxi dos de optimización anteriores. La parametrización se ha simplificado en este estudio, lo que notablemente reduce el coste numérico de todo el estudio de optimización, a la vez que aún recoge las características geométricas más relevantes en un tren de alta velocidad. Este análisis ha permitido identificar y cuantificar la influencia de cada uno de los parámetros geométricos incluídos en la parametrización, y se ha observado que el diseño de la arista superior a barlovento es fundamental, siendo su influencia mayor que la longitud del testero o que la sección frontal del mismo. Finalmente, se ha considerado un escenario más a fin de validar estos métodos y su capacidad de encontrar un óptimo global. La entrada de un tren de alta velocidad en un túnel es uno de los casos más exigentes para un tren por el pico de sobrepresión generado, el cual afecta a la confortabilidad del pasajero, así como a la estabilidad del vehículo y al entorno próximo a la salida del túnel. Además de este problema, otro objetivo a minimizar es la resistencia aerodinámica, notablemente superior al caso de campo abierto. Este problema se resuelve usando algoritmos genéticos. Dicho método permite obtener un frente de Pareto donde se incluyen el conjunto de óptimos que minimizan ambos objetivos. ABSTRACT Aerodynamic design of trains influences several aspects of high-speed trains performance in a very significant level. In this situation, considering also that new aerodynamic problems have arisen due to the increase of the cruise speed and lightness of the vehicle, it is evident the necessity of proposing an optimization study concerning the train aerodynamics. Thus, the aerodynamic optimization of the nose shape of a high-speed train is presented in this thesis. This optimization is based on advanced optimization methods. Among these methods, genetic algorithms and the adjoint method have been selected. A theoretical description of their bases, the characteristics and the implementation of each method is detailed in this thesis. This introduction permits understanding the causes of their selection, and the advantages and drawbacks of their application. The genetic algorithms requirethe geometrical parameterization of any optimal candidate and the generation of a metamodel or surrogate model that complete the optimization process. These points are addressed with a special attention in the first block of the thesis, focused on the methodology considered in this study. The second block is referred to the use of these methods with the purpose of optimizing the aerodynamic performance of a high-speed train in several scenarios. These scenarios englobe the most representative operating conditions of high-speed trains, and also some of the most exigent train aerodynamic problems: front wind and cross-wind situations in open air, and the entrance of a high-speed train in a tunnel. The genetic algorithms and the adjoint method have been applied in the minimization of the aerodynamic drag on the train with front wind in open air. The comparison of these methods allows to evaluate the methdology and computational cost of each one, as well as the resulting minimization of the aerodynamic drag. Simplicity and robustness, the straightforward realization of a multi-objective optimization, and the capability of searching a global optimum are the main attributes of genetic algorithm. However, the requirement of geometrically parameterize any optimal candidate is a significant drawback that is avoided with the use of the adjoint method. This independence of the number of design variables leads to a relevant reduction of the pre-processing and computational cost. Considering the cross-wind stability, both methods are used again for the minimization of the side force. In this case, a simplification of the geometric parameterization of the train nose is adopted, what dramatically reduces the computational cost of the optimization process. Nevertheless, some of the most important geometrical characteristics are still described with this simplified parameterization. This analysis identifies and quantifies the influence of each design variable on the side force on the train. It is observed that the A-pillar roundness is the most demanding design parameter, with a more important effect than the nose length or the train cross-section area. Finally, a third scenario is considered for the validation of these methods in the aerodynamic optimization of a high-speed train. The entrance of a train in a tunnel is one of the most exigent train aerodynamic problems. The aerodynamic consequences of high-speed trains running in a tunnel are basically resumed in two correlated phenomena, the generation of pressure waves and an increase in aerodynamic drag. This multi-objective optimization problem is solved with genetic algorithms. The result is a Pareto front where a set of optimal solutions that minimize both objectives.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In a crosswind scenario, the risk of high-speed trains overturning increases when they run on viaducts since the aerodynamic loads are higher than on the ground. In order to increase safety, vehicles are sheltered by fences that are installed on the viaduct to reduce the loads experienced by the train. Windbreaks can be designed to have different heights, and with or without eaves on the top. In this paper, a parametric study with a total of 12 fence designs was carried out using a two-dimensional model of a train standing on a viaduct. To asses the relative effectiveness of sheltering devices, tests were done in a wind tunnel with a scaled model at a Reynolds number of 1 × 105, and the train’s aerodynamic coefficients were measured. Experimental results were compared with those predicted by Unsteady Reynolds-averaged Navier-Stokes (URANS) simulations of flow, showing that a computational model is able to satisfactorily predict the trend of the aerodynamic coefficients. In a second set of tests, the Reynolds number was increased to 12 × 106 (at a free flow air velocity of 30 m/s) in order to simulate strong wind conditions. The aerodynamic coefficients showed a similar trend for both Reynolds numbers; however, their numerical value changed enough to indicate that simulations at the lower Reynolds number do not provide all required information. Furthermore, the variation of coefficients in the simulations allowed an explanation of how fences modified the flow around the vehicle to be proposed. This made it clear why increasing fence height reduced all the coefficients but adding an eave had an effect mainly on the lift force coefficient. Finally, by analysing the time signals it was possible to clarify the influence of the Reynolds number on the peak-to-peak amplitude, the time period and the Strouhal number.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La Aeroelasticidad fue definida por Arthur Collar en 1947 como "el estudio de la interacción mutua entre fuerzas inerciales, elásticas y aerodinámicas actuando sobre elementos estructurales expuestos a una corriente de aire". Actualmente, esta definición se ha extendido hasta abarcar la influencia del control („Aeroservoelasticidad‟) e, incluso, de la temperatura („Aerotermoelasticidad‟). En el ámbito de la Ingeniería Aeronáutica, los fenómenos aeroelásticos, tanto estáticos (divergencia, inversión de mando) como dinámicos (flameo, bataneo) son bien conocidos desde los inicios de la Aviación. Las lecciones aprendidas a lo largo de la Historia Aeronáutica han permitido establecer criterios de diseño destinados a mitigar la probabilidad de sufrir fenómenos aeroelásticos adversos durante la vida operativa de una aeronave. Adicionalmente, el gran avance experimentado durante esta última década en el campo de la Aerodinámica Computacional y en la modelización aeroelástica ha permitido mejorar la fiabilidad en el cálculo de las condiciones de flameo de una aeronave en su fase de diseño. Sin embargo, aún hoy, los ensayos en vuelo siguen siendo necesarios para validar modelos aeroelásticos, verificar que la aeronave está libre de inestabilidades aeroelásticas y certificar sus distintas envolventes. En particular, durante el proceso de expansión de la envolvente de una aeronave en altitud/velocidad, se requiere predecir en tiempo real las condiciones de flameo y, en consecuencia, evitarlas. A tal efecto, en el ámbito de los ensayos en vuelo, se han desarrollado diversas metodologías que predicen, en tiempo real, las condiciones de flameo en función de condiciones de vuelo ya verificadas como libres de inestabilidades aeroelásticas. De entre todas ellas, aquella que relaciona el amortiguamiento y la velocidad con un parámetro específico definido como „Margen de Flameo‟ (Flutter Margin), permanece como la técnica más común para proceder con la expansión de Envolventes en altitud/velocidad. No obstante, a pesar de su popularidad y facilidad de aplicación, dicha técnica no es adecuada cuando en la aeronave a ensayar se hallan presentes no-linealidades mecánicas como, por ejemplo, holguras. En particular, en vuelos de ensayo dedicados específicamente a expandir la envolvente en altitud/velocidad, las condiciones de „Oscilaciones de Ciclo Límite‟ (Limit Cycle Oscillations, LCOs) no pueden ser diferenciadas de manera precisa de las condiciones de flameo, llevando a una determinación excesivamente conservativa de la misma. La presente Tesis desarrolla una metodología novedosa, basada en el concepto de „Margen de Flameo‟, que permite predecir en tiempo real las condiciones de „Ciclo Límite‟, siempre que existan, distinguiéndolas de las de flameo. En una primera parte, se realiza una revisión bibliográfica de la literatura acerca de los diversos métodos de ensayo existentes para efectuar la expansión de la envolvente de una aeronave en altitud/velocidad, el efecto de las no-linealidades mecánicas en el comportamiento aeroelástico de dicha aeronave, así como una revisión de las Normas de Certificación civiles y militares respecto a este tema. En una segunda parte, se propone una metodología de expansión de envolvente en tiempo real, basada en el concepto de „Margen de Flameo‟, que tiene en cuenta la presencia de no-linealidades del tipo holgura en el sistema aeroelástico objeto de estudio. Adicionalmente, la metodología propuesta se valida contra un modelo aeroelástico bidimensional paramétrico e interactivo programado en Matlab. Para ello, se plantean las ecuaciones aeroelásticas no-estacionarias de un perfil bidimensional en la formulación espacio-estado y se incorpora la metodología anterior a través de un módulo de análisis de señal y otro módulo de predicción. En una tercera parte, se comparan las conclusiones obtenidas con las expuestas en la literatura actual y se aplica la metodología propuesta a resultados experimentales de ensayos en vuelo reales. En resumen, los principales resultados de esta Tesis son: 1. Resumen del estado del arte en los métodos de ensayo aplicados a la expansión de envolvente en altitud/velocidad y la influencia de no-linealidades mecánicas en la determinación de la misma. 2. Revisión de la normas de Certificación Civiles y las normas Militares en relación a la verificación aeroelástica de aeronaves y los límites permitidos en presencia de no-linealidades. 3. Desarrollo de una metodología de expansión de envolvente basada en el Margen de Flameo. 4. Validación de la metodología anterior contra un modelo aeroelástico bidimensional paramétrico e interactivo programado en Matlab/Simulink. 5. Análisis de los resultados obtenidos y comparación con resultados experimentales. ABSTRACT Aeroelasticity was defined by Arthur Collar in 1947 as “the study of the mutual interaction among inertia, elastic and aerodynamic forces when acting on structural elements surrounded by airflow”. Today, this definition has been updated to take into account the Controls („Aeroservoelasticity‟) and even the temperature („Aerothermoelasticity‟). Within the Aeronautical Engineering, aeroelastic phenomena, either static (divergence, aileron reversal) or dynamic (flutter, buzz), are well known since the early beginning of the Aviation. Lessons learned along the History of the Aeronautics have provided several design criteria in order to mitigate the probability of encountering adverse aeroelastic phenomena along the operational life of an aircraft. Additionally, last decade improvements experienced by the Computational Aerodynamics and aeroelastic modelization have refined the flutter onset speed calculations during the design phase of an aircraft. However, still today, flight test remains as a key tool to validate aeroelastic models, to verify flutter-free conditions and to certify the different envelopes of an aircraft. Specifically, during the envelope expansion in altitude/speed, real time prediction of flutter conditions is required in order to avoid them in flight. In that sense, within the flight test community, several methodologies have been developed to predict in real time flutter conditions based on free-flutter flight conditions. Among them, the damping versus velocity technique combined with a Flutter Margin implementation remains as the most common technique used to proceed with the envelope expansion in altitude/airspeed. However, although its popularity and „easy to implement‟ characteristics, several shortcomings can adversely affect to the identification of unstable conditions when mechanical non-linearties, as freeplay, are present. Specially, during test flights devoted to envelope expansion in altitude/airspeed, Limits Cycle Oscillations (LCOs) conditions can not be accurately distinguished from those of flutter and, in consequence, it leads to an excessively conservative envelope determination. The present Thesis develops a new methodology, based on the Flutter Margin concept, that enables in real time the prediction of the „Limit Cycle‟ conditions, whenever they exist, without degrading the capability of predicting the flutter onset speed. The first part of this Thesis presents a review of the state of the art regarding the test methods available to proceed with the envelope expansion of an aircraft in altitude/airspeed and the effect of mechanical non-linearities on the aeroelastic behavior. Also, both civil and military regulations are reviewed with respect aeroelastic investigation of air vehicles. The second part of this Thesis proposes a new methodology to perform envelope expansion in real time based on the Flutter Margin concept when non-linearities, as freeplay, are present. Additionally, this methodology is validated against a Matlab/Slimulink bidimensional aeroelastic model. This model, parametric and interactive, is formulated within the state-space field and it implements the proposed methodology through two main real time modules: A signal processing module and a prediction module. The third part of this Thesis compares the final conclusions derived from the proposed methodology with those stated by the flight test community and experimental results. In summary, the main results provided by this Thesis are: 1. State of the Art review of the test methods applied to envelope expansion in altitude/airspeed and the influence of mechanical non-linearities in its identification. 2. Review of the main civil and military regulations regarding the aeroelastic verification of air vehicles and the limits set when non-linearities are present. 3. Development of a methodology for envelope expansion based on the Flutter Margin concept. 4. A Matlab/Simulink 2D-[aeroelastic model], parametric and interactive, used as a tool to validate the proposed methodology. 5. Conclusions driven from the present Thesis and comparison with experimental results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To better understand destruction mechanisms of wake-vortices behind aircraft, the point vortex method for stability (inviscid) used by Crow is here compared with viscous modal global stability analysis of the linearized Navier-Stokes equations acting on a two-dimensional basic flow, i.e. BiGlobal stability analysis. The fact that the BiGlobal method is viscous, and uses a flnite área vortex model, gives rise to results somewhat different from the point vortex model. It adds more parameters to the problem, but is more realistic.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

High suction loads appear on roofs of low-height buildings. The use of parapets with appropriate height at the roof edges alleviates these loads. The performance of six parapet configurations to decrease the suction loads induced on roofs by oblique winds has been studied in a low speed wind tunnel. The studied parapet configurations include vertical wall parapets, either solid or porous, and cantilevered parapets formed by a small horizontal roof close to the building roof. Low-height parapets with a medium porosity and cantilevered parapets are more efficient than solid parapets to reduce the wind suctions generated on the roofs by conical vortices.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The yawing moment acting on the box-girder deck of reinforced concrete bridges constructed using the balanced cantilever method during the erection stage has been experimentally analyzed by testing different types of bridge cross-sections. Experimental results show that the yawing moment coefficient decreases as the bridge decks become streamlined, and that the yawing moment coefficient reaches a maximum when the bridge deck length is nearly twice the deck width.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Different methods to reduce the high suction caused by conical vortices have been reported in the literature: vertical parapets, either solid or porous, placed at the roof edges being the most analysed configuration. Another method for alleviating the high suction peaks due to conical vortices is the use of some non-standard parapet configuration like cantilever parapets. In this paper the influence of roof curvature on the conical vortex pattern appearing on a curved roof (Fig. 1) when subject to oblique winds is experimentally analysed by testing the mean pressure distribution on the curved roofs of low-rise building models in a wind tunnel. Also, the efficiency of cantilever parapets to reduce mean suction loads on curved roofs is experimentally checked. Very high suction loads have been measured on curved roofs, the magnitude of these high suction loads being significantly decreased when cantilever parapets are used. Thus, the suitability of these parapets to reduce wind pressure loads on curved roofs is demonstrated.