22 resultados para Least-squares support vector machine


Relevância:

100.00% 100.00%

Publicador:

Resumo:

En este proyecto estudia la posibilidad de realizar una verificación de locutor por medio de la biometría de voz. En primer lugar se obtendrán las características principales de la voz, que serían los coeficientes MFCC, partiendo de una base de datos de diferentes locutores con 10 muestras por cada locutor. Con estos resultados se procederá a la creación de los clasificadores con los que luego testearemos y haremos la verificación. Como resultado final obtendremos un sistema capaz de identificar si el locutor es el que buscamos o no. Para la verificación se utilizan clasificadores Support Vector Machine (SVM), especializado en resolver problemas biclase. Los resultados demuestran que el sistema es capaz de verificar que un locutor es quien dice ser comparándolo con el resto de locutores disponibles en la base de datos. ABSTRACT. Verification based on voice features is an important task for a wide variety of applications concerning biometric verification systems. In this work, we propose a human verification though the use of their voice features focused on supervised training classification algorithms. To this aim we have developed a voice feature extraction system based on MFCC features. For classification purposed we have focused our work in using a Support Vector Machine classificator due to it’s optimization for biclass problems. We test our system in a dataset composed of various individuals of di↵erent gender to evaluate our system’s performance. Experimental results reveal that the proposed system is capable of verificating one individual against the rest of the dataset.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A more natural, intuitive, user-friendly, and less intrusive Human–Computer interface for controlling an application by executing hand gestures is presented. For this purpose, a robust vision-based hand-gesture recognition system has been developed, and a new database has been created to test it. The system is divided into three stages: detection, tracking, and recognition. The detection stage searches in every frame of a video sequence potential hand poses using a binary Support Vector Machine classifier and Local Binary Patterns as feature vectors. These detections are employed as input of a tracker to generate a spatio-temporal trajectory of hand poses. Finally, the recognition stage segments a spatio-temporal volume of data using the obtained trajectories, and compute a video descriptor called Volumetric Spatiograms of Local Binary Patterns (VS-LBP), which is delivered to a bank of SVM classifiers to perform the gesture recognition. The VS-LBP is a novel video descriptor that constitutes one of the most important contributions of the paper, which is able to provide much richer spatio-temporal information than other existing approaches in the state of the art with a manageable computational cost. Excellent results have been obtained outperforming other approaches of the state of the art.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La presente Tesis Doctoral aborda la aplicación de métodos meshless, o métodos sin malla, a problemas de autovalores, fundamentalmente vibraciones libres y pandeo. En particular, el estudio se centra en aspectos tales como los procedimientos para la resolución numérica del problema de autovalores con estos métodos, el coste computacional y la viabilidad de la utilización de matrices de masa o matrices de rigidez geométrica no consistentes. Además, se acomete en detalle el análisis del error, con el objetivo de determinar sus principales fuentes y obtener claves que permitan la aceleración de la convergencia. Aunque en la actualidad existe una amplia variedad de métodos meshless en apariencia independientes entre sí, se han analizado las diferentes relaciones entre ellos, deduciéndose que el método Element-Free Galerkin Method [Método Galerkin Sin Elementos] (EFGM) es representativo de un amplio grupo de los mismos. Por ello se ha empleado como referencia en este análisis. Muchas de las fuentes de error de un método sin malla provienen de su algoritmo de interpolación o aproximación. En el caso del EFGM ese algoritmo es conocido como Moving Least Squares [Mínimos Cuadrados Móviles] (MLS), caso particular del Generalized Moving Least Squares [Mínimos Cuadrados Móviles Generalizados] (GMLS). La formulación de estos algoritmos indica que la precisión de los mismos se basa en los siguientes factores: orden de la base polinómica p(x), características de la función de peso w(x) y forma y tamaño del soporte de definición de esa función. Se ha analizado la contribución individual de cada factor mediante su reducción a un único parámetro cuantificable, así como las interacciones entre ellos tanto en distribuciones regulares de nodos como en irregulares. El estudio se extiende a una serie de problemas estructurales uni y bidimensionales de referencia, y tiene en cuenta el error no sólo en el cálculo de autovalores (frecuencias propias o carga de pandeo, según el caso), sino también en términos de autovectores. This Doctoral Thesis deals with the application of meshless methods to eigenvalue problems, particularly free vibrations and buckling. The analysis is focused on aspects such as the numerical solving of the problem, computational cost and the feasibility of the use of non-consistent mass or geometric stiffness matrices. Furthermore, the analysis of the error is also considered, with the aim of identifying its main sources and obtaining the key factors that enable a faster convergence of a given problem. Although currently a wide variety of apparently independent meshless methods can be found in the literature, the relationships among them have been analyzed. The outcome of this assessment is that all those methods can be grouped in only a limited amount of categories, and that the Element-Free Galerkin Method (EFGM) is representative of the most important one. Therefore, the EFGM has been selected as a reference for the numerical analyses. Many of the error sources of a meshless method are contributed by its interpolation/approximation algorithm. In the EFGM, such algorithm is known as Moving Least Squares (MLS), a particular case of the Generalized Moving Least Squares (GMLS). The accuracy of the MLS is based on the following factors: order of the polynomial basis p(x), features of the weight function w(x), and shape and size of the support domain of this weight function. The individual contribution of each of these factors, along with the interactions among them, has been studied in both regular and irregular arrangement of nodes, by means of a reduction of each contribution to a one single quantifiable parameter. This assessment is applied to a range of both one- and two-dimensional benchmarking cases, and includes not only the error in terms of eigenvalues (natural frequencies or buckling load), but also of eigenvectors

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hoy en día, con la evolución continua y rápida de las tecnologías de la información y los dispositivos de computación, se recogen y almacenan continuamente grandes volúmenes de datos en distintos dominios y a través de diversas aplicaciones del mundo real. La extracción de conocimiento útil de una cantidad tan enorme de datos no se puede realizar habitualmente de forma manual, y requiere el uso de técnicas adecuadas de aprendizaje automático y de minería de datos. La clasificación es una de las técnicas más importantes que ha sido aplicada con éxito a varias áreas. En general, la clasificación se compone de dos pasos principales: en primer lugar, aprender un modelo de clasificación o clasificador a partir de un conjunto de datos de entrenamiento, y en segundo lugar, clasificar las nuevas instancias de datos utilizando el clasificador aprendido. La clasificación es supervisada cuando todas las etiquetas están presentes en los datos de entrenamiento (es decir, datos completamente etiquetados), semi-supervisada cuando sólo algunas etiquetas son conocidas (es decir, datos parcialmente etiquetados), y no supervisada cuando todas las etiquetas están ausentes en los datos de entrenamiento (es decir, datos no etiquetados). Además, aparte de esta taxonomía, el problema de clasificación se puede categorizar en unidimensional o multidimensional en función del número de variables clase, una o más, respectivamente; o también puede ser categorizado en estacionario o cambiante con el tiempo en función de las características de los datos y de la tasa de cambio subyacente. A lo largo de esta tesis, tratamos el problema de clasificación desde tres perspectivas diferentes, a saber, clasificación supervisada multidimensional estacionaria, clasificación semisupervisada unidimensional cambiante con el tiempo, y clasificación supervisada multidimensional cambiante con el tiempo. Para llevar a cabo esta tarea, hemos usado básicamente los clasificadores Bayesianos como modelos. La primera contribución, dirigiéndose al problema de clasificación supervisada multidimensional estacionaria, se compone de dos nuevos métodos de aprendizaje de clasificadores Bayesianos multidimensionales a partir de datos estacionarios. Los métodos se proponen desde dos puntos de vista diferentes. El primer método, denominado CB-MBC, se basa en una estrategia de envoltura de selección de variables que es voraz y hacia delante, mientras que el segundo, denominado MB-MBC, es una estrategia de filtrado de variables con una aproximación basada en restricciones y en el manto de Markov. Ambos métodos han sido aplicados a dos problemas reales importantes, a saber, la predicción de los inhibidores de la transcriptasa inversa y de la proteasa para el problema de infección por el virus de la inmunodeficiencia humana tipo 1 (HIV-1), y la predicción del European Quality of Life-5 Dimensions (EQ-5D) a partir de los cuestionarios de la enfermedad de Parkinson con 39 ítems (PDQ-39). El estudio experimental incluye comparaciones de CB-MBC y MB-MBC con los métodos del estado del arte de la clasificación multidimensional, así como con métodos comúnmente utilizados para resolver el problema de predicción de la enfermedad de Parkinson, a saber, la regresión logística multinomial, mínimos cuadrados ordinarios, y mínimas desviaciones absolutas censuradas. En ambas aplicaciones, los resultados han sido prometedores con respecto a la precisión de la clasificación, así como en relación al análisis de las estructuras gráficas que identifican interacciones conocidas y novedosas entre las variables. La segunda contribución, referida al problema de clasificación semi-supervisada unidimensional cambiante con el tiempo, consiste en un método nuevo (CPL-DS) para clasificar flujos de datos parcialmente etiquetados. Los flujos de datos difieren de los conjuntos de datos estacionarios en su proceso de generación muy rápido y en su aspecto de cambio de concepto. Es decir, los conceptos aprendidos y/o la distribución subyacente están probablemente cambiando y evolucionando en el tiempo, lo que hace que el modelo de clasificación actual sea obsoleto y deba ser actualizado. CPL-DS utiliza la divergencia de Kullback-Leibler y el método de bootstrapping para cuantificar y detectar tres tipos posibles de cambio: en las predictoras, en la a posteriori de la clase o en ambas. Después, si se detecta cualquier cambio, un nuevo modelo de clasificación se aprende usando el algoritmo EM; si no, el modelo de clasificación actual se mantiene sin modificaciones. CPL-DS es general, ya que puede ser aplicado a varios modelos de clasificación. Usando dos modelos diferentes, el clasificador naive Bayes y la regresión logística, CPL-DS se ha probado con flujos de datos sintéticos y también se ha aplicado al problema real de la detección de código malware, en el cual los nuevos ficheros recibidos deben ser continuamente clasificados en malware o goodware. Los resultados experimentales muestran que nuestro método es efectivo para la detección de diferentes tipos de cambio a partir de los flujos de datos parcialmente etiquetados y también tiene una buena precisión de la clasificación. Finalmente, la tercera contribución, sobre el problema de clasificación supervisada multidimensional cambiante con el tiempo, consiste en dos métodos adaptativos, a saber, Locally Adpative-MB-MBC (LA-MB-MBC) y Globally Adpative-MB-MBC (GA-MB-MBC). Ambos métodos monitorizan el cambio de concepto a lo largo del tiempo utilizando la log-verosimilitud media como métrica y el test de Page-Hinkley. Luego, si se detecta un cambio de concepto, LA-MB-MBC adapta el actual clasificador Bayesiano multidimensional localmente alrededor de cada nodo cambiado, mientras que GA-MB-MBC aprende un nuevo clasificador Bayesiano multidimensional. El estudio experimental realizado usando flujos de datos sintéticos multidimensionales indica los méritos de los métodos adaptativos propuestos. ABSTRACT Nowadays, with the ongoing and rapid evolution of information technology and computing devices, large volumes of data are continuously collected and stored in different domains and through various real-world applications. Extracting useful knowledge from such a huge amount of data usually cannot be performed manually, and requires the use of adequate machine learning and data mining techniques. Classification is one of the most important techniques that has been successfully applied to several areas. Roughly speaking, classification consists of two main steps: first, learn a classification model or classifier from an available training data, and secondly, classify the new incoming unseen data instances using the learned classifier. Classification is supervised when the whole class values are present in the training data (i.e., fully labeled data), semi-supervised when only some class values are known (i.e., partially labeled data), and unsupervised when the whole class values are missing in the training data (i.e., unlabeled data). In addition, besides this taxonomy, the classification problem can be categorized into uni-dimensional or multi-dimensional depending on the number of class variables, one or more, respectively; or can be also categorized into stationary or streaming depending on the characteristics of the data and the rate of change underlying it. Through this thesis, we deal with the classification problem under three different settings, namely, supervised multi-dimensional stationary classification, semi-supervised unidimensional streaming classification, and supervised multi-dimensional streaming classification. To accomplish this task, we basically used Bayesian network classifiers as models. The first contribution, addressing the supervised multi-dimensional stationary classification problem, consists of two new methods for learning multi-dimensional Bayesian network classifiers from stationary data. They are proposed from two different points of view. The first method, named CB-MBC, is based on a wrapper greedy forward selection approach, while the second one, named MB-MBC, is a filter constraint-based approach based on Markov blankets. Both methods are applied to two important real-world problems, namely, the prediction of the human immunodeficiency virus type 1 (HIV-1) reverse transcriptase and protease inhibitors, and the prediction of the European Quality of Life-5 Dimensions (EQ-5D) from 39-item Parkinson’s Disease Questionnaire (PDQ-39). The experimental study includes comparisons of CB-MBC and MB-MBC against state-of-the-art multi-dimensional classification methods, as well as against commonly used methods for solving the Parkinson’s disease prediction problem, namely, multinomial logistic regression, ordinary least squares, and censored least absolute deviations. For both considered case studies, results are promising in terms of classification accuracy as well as regarding the analysis of the learned MBC graphical structures identifying known and novel interactions among variables. The second contribution, addressing the semi-supervised uni-dimensional streaming classification problem, consists of a novel method (CPL-DS) for classifying partially labeled data streams. Data streams differ from the stationary data sets by their highly rapid generation process and their concept-drifting aspect. That is, the learned concepts and/or the underlying distribution are likely changing and evolving over time, which makes the current classification model out-of-date requiring to be updated. CPL-DS uses the Kullback-Leibler divergence and bootstrapping method to quantify and detect three possible kinds of drift: feature, conditional or dual. Then, if any occurs, a new classification model is learned using the expectation-maximization algorithm; otherwise, the current classification model is kept unchanged. CPL-DS is general as it can be applied to several classification models. Using two different models, namely, naive Bayes classifier and logistic regression, CPL-DS is tested with synthetic data streams and applied to the real-world problem of malware detection, where the new received files should be continuously classified into malware or goodware. Experimental results show that our approach is effective for detecting different kinds of drift from partially labeled data streams, as well as having a good classification performance. Finally, the third contribution, addressing the supervised multi-dimensional streaming classification problem, consists of two adaptive methods, namely, Locally Adaptive-MB-MBC (LA-MB-MBC) and Globally Adaptive-MB-MBC (GA-MB-MBC). Both methods monitor the concept drift over time using the average log-likelihood score and the Page-Hinkley test. Then, if a drift is detected, LA-MB-MBC adapts the current multi-dimensional Bayesian network classifier locally around each changed node, whereas GA-MB-MBC learns a new multi-dimensional Bayesian network classifier from scratch. Experimental study carried out using synthetic multi-dimensional data streams shows the merits of both proposed adaptive methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

El primer procesamiento estricto realizado con el software científico Bernese y contemplando las más estrictas normas de cálculo recomendadas internacionalmente, permitió obtener un campo puntual de alta exactitud, basado en la integración y estandarización de los datos de una red GPS ubicada en Costa Rica. Este procesamiento contempló un total de 119 semanas de datos diarios, es decir unos 2,3 años, desde enero del año 2009 hasta abril del año 2011, para un total de 30 estaciones GPS, de las cuales 22 están ubicadas en el territorio nacional de Costa Rica y 8 internaciones pertenecientes a la red del Sistema Geocéntrico para las Américas (SIRGAS). Las denominadas soluciones semilibres generaron, semana a semana, una red GPS con una alta exactitud interna definida por medio de los vectores entre las estaciones y las coordenadas finales de la constelación satelital. La evaluación semanal dada por la repetibilidad de las soluciones brindó en promedio errores de 1,7 mm, 1,4 mm y 5,1 mm en las componentes [n e u], confirmando una alta consistencia en estas soluciones. Aunque las soluciones semilibres poseen una alta exactitud interna, las mismas no son utilizables para fines de análisis cinemático, pues carecen de un marco de referencia. En Latinoamérica, la densificación del Marco Internacional Terrestre de Referencia (ITRF), está representado por la red de estaciones de operación continua GNSS de SIRGAS, denominada como SIRGAS-CON. Por medio de las denominadas coordenadas semanales finales de las 8 estaciones consideradas como vínculo, se refirió cada una de las 119 soluciones al marco SIRGAS. La introducción del marco de referencia SIRGAS a las soluciones semilibres produce deformaciones en estas soluciones. Las deformaciones de las soluciones semilibres son producto de las cinemática de cada una de las placas en las que se ubican las estaciones de vínculo. Luego de efectuado el amarre semanal a las coordenadas SIRGAS, se hizo una estimación de los vectores de velocidad de cada una de las estaciones, incluyendo las de amarre, cuyos valores de velocidad se conocen con una alta exactitud. Para la determinación de las velocidades de las estaciones costarricenses, se programó una rutina en ambiente MatLab, basada en una ajuste por mínimos cuadrados. Los valores obtenidos en el marco de este proyecto en comparación con los valores oficiales, brindaron diferencias promedio del orden de los 0,06 cm/a, -0,08 cm/a y -0,10 cm/a respectivamente para las coordenadas [X Y Z]. De esta manera se logró determinar las coordenadas geocéntricas [X Y Z]T y sus variaciones temporales [vX vY vZ]T para el conjunto de 22 estaciones GPS de Costa Rica, dentro del datum IGS05, época de referencia 2010,5. Aunque se logró una alta exactitud en los vectores de coordenadas geocéntricas de las 22 estaciones, para algunas de las estaciones el cálculo de las velocidades no fue representativo debido al relativo corto tiempo (menos de un año) de archivos de datos. Bajo esta premisa, se excluyeron las ocho estaciones ubicadas al sur de país. Esto implicó hacer una estimación del campo local de velocidades con solamente veinte estaciones nacionales más tres estaciones en Panamá y una en Nicaragua. El algoritmo usado fue el denominado Colocación por Mínimos Cuadrados, el cual permite la estimación o interpolación de datos a partir de datos efectivamente conocidos, el cual fue programado mediante una rutina en ambiente MatLab. El campo resultante se estimó con una resolución de 30' X 30' y es altamente constante, con una velocidad resultante promedio de 2,58 cm/a en una dirección de 40,8° en dirección noreste. Este campo fue validado con base en los datos del modelo VEMOS2009, recomendado por SIRGAS. Las diferencias de velocidad promedio para las estaciones usadas como insumo para el cálculo del campo fueron del orden los +0,63 cm/a y +0,22 cm/a para los valores de velocidad en latitud y longitud, lo que supone una buena determinación de los valores de velocidad y de la estimación de la función de covarianza empírica, necesaria para la aplicación del método de colocación. Además, la grilla usada como base para la interpolación brindó diferencias del orden de -0,62 cm/a y -0,12 cm/a para latitud y longitud. Adicionalmente los resultados de este trabajo fueron usados como insumo para hacer una aproximación en la definición del límite del llamado Bloque de Panamá dentro del territorio nacional de Costa Rica. El cálculo de las componentes del Polo de Euler por medio de una rutina programa en ambiente MatLab y aplicado a diferentes combinaciones de puntos no brindó mayores aportes a la definición física de este límite. La estrategia lo que confirmó fue simplemente la diferencia en la dirección de todos los vectores velocidad y no permitió reveló revelar con mayor detalle una ubicación de esta zona dentro del territorio nacional de Costa Rica. ABSTRACT The first strict processing performed with the Bernese scientific software and contemplating the highest standards internationally recommended calculation, yielded a precise field of high accuracy, based on the integration and standardization of data from a GPS network located in Costa Rica. This processing watched a total of 119 weeks of daily data, is about 2.3 years from January 2009 to April 2011, for a total of 30 GPS stations, of which 22 are located in the country of Costa Rica and 8 hospitalizations within the network of Geocentric System for the Americas (SIRGAS). The semi-free solutions generated, every week a GPS network with high internal accuracy defined by vectors between stations and the final coordinates of the satellite constellation. The weekly evaluation given by repeatability of the solutions provided in average errors of 1.7 mm 1.4 mm and 5.1 mm in the components [n e u], confirming a high consistency in these solutions. Although semi-free solutions have a high internal accuracy, they are not used for purposes of kinematic analysis, because they lack a reference frame. In Latin America, the densification of the International Terrestrial Reference Frame (ITRF), is represented by a network of continuously operating GNSS stations SIRGAS, known as SIRGAS-CON. Through weekly final coordinates of the 8 stations considered as a link, described each of the solutions to the frame 119 SIRGAS. The introduction of the frame SIRGAS to semi-free solutions generates deformations. The deformations of the semi-free solutions are products of the kinematics of each of the plates in which link stations are located. After SIRGAS weekly link to SIRGAS frame, an estimate of the velocity vectors of each of the stations was done. The velocity vectors for each SIRGAS stations are known with high accuracy. For this calculation routine in MatLab environment, based on a least squares fit was scheduled. The values obtained compared to the official values, gave average differences of the order of 0.06 cm/yr, -0.08 cm/yr and -0.10 cm/yr respectively for the coordinates [XYZ]. Thus was possible to determine the geocentric coordinates [XYZ]T and its temporal variations [vX vY vZ]T for the set of 22 GPS stations of Costa Rica, within IGS05 datum, reference epoch 2010.5. The high accuracy vector for geocentric coordinates was obtained, however for some stations the velocity vectors was not representative because of the relatively short time (less than one year) of data files. Under this premise, the eight stations located in the south of the country were excluded. This involved an estimate of the local velocity field with only twenty national stations plus three stations in Panama and Nicaragua. The algorithm used was Least Squares Collocation, which allows the estimation and interpolation of data from known data effectively. The algorithm was programmed with MatLab. The resulting field was estimated with a resolution of 30' X 30' and is highly consistent with a resulting average speed of 2.58 cm/y in a direction of 40.8° to the northeast. This field was validated based on the model data VEMOS2009 recommended by SIRGAS. The differences in average velocity for the stations used as input for the calculation of the field were of the order of +0.63 cm/yr, +0.22 cm/yr for the velocity values in latitude and longitude, which is a good determination velocity values and estimating the empirical covariance function necessary for implementing the method of application. Furthermore, the grid used as the basis for interpolation provided differences of about -0.62 cm/yr, -0.12 cm/yr to latitude and longitude. Additionally, the results of this investigation were used as input to an approach in defining the boundary of Panama called block within the country of Costa Rica. The calculation of the components of the Euler pole through a routine program in MatLab and applied to different combinations of points gave no further contributions to the physical definition of this limit. The strategy was simply confirming the difference in the direction of all the velocity vectors and not allowed to reveal more detail revealed a location of this area within the country of Costa Rica.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The building sector has experienced a significant decline in recent years in Spain and Europe as a result of the financial crisis that began in 2007. This drop accompanies a low penetration of information and communication technologies in inter-organizational oriented business processes. The market decrease is causing a slowdown in the building sector, where only flexible small and medium enterprises (SMEs) survive thanks to specialization and innovation in services, which allow them to face new market demands. Inter-organizational information systems (IOISs) support innovation in services, and are thus a strategic tool for SMEs to obtain competitive advantage. Because of the inherent complexity of IOIS adoption, this research extends Kurnia and Johnston's (2000) theoretical model of IOIS adoption with an empirical model of IOIS characterization. The resultant model identifies the factors influencing IOIS adoption in SMEs in the building sector, to promote further service innovation for competitive and collaborative advantages. An empirical longitudinal study over six consecutive years using data from Spanish SMEs in the building sector validates the model, using the partial least squares technique and analyzing temporal stability. The main findings of this research are the four ways an IOIS might contribute to service innovation in the building sector. Namely: a) improving client interfaces and the link between service providers and end users; b) defining a specific market where SMEs can develop new service concepts; c) enhancing the service delivery system in traditional customer?supplier relationships; and d) introducing information and communication technologies and tools to improve information management.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

El incremento de la esperanza de vida en los países desarrollados (más de 80 años en 2013), está suponiendo un crecimiento considerable en la incidencia y prevalencia de enfermedades discapacitantes, que si bien pueden aparecer a edades tempranas, son más frecuentes en la tercera edad, o en sus inmediaciones. Enfermedades neuro-degenerativas que suponen un gran hándicap funcional, pues algunas de ellas están asociadas a movimientos involuntarios de determinadas partes del cuerpo, sobre todo de las extremidades. Tareas cotidianas como la ingesta de alimento, vestirse, escribir, interactuar con el ordenador, etc… pueden llegar a ser grandes retos para las personas que las padecen. El diagnóstico precoz y certero resulta fundamental para la prescripción de la terapia o tratamiento óptimo. Teniendo en cuenta incluso que en muchos casos, por desgracia la mayoría, sólo se puede actuar para mitigar los síntomas, y no para sanarlos, al menos de momento. Aun así, acertar de manera temprana en el diagnóstico supone proporcionar al enfermo una mayor calidad de vida durante mucho más tiempo, por lo cual el esfuerzo merece, y mucho, la pena. Los enfermos de Párkinson y de temblor esencial suponen un porcentaje importante de la casuística clínica en los trastornos del movimiento que impiden llevar una vida normal, que producen una discapacidad física y una no menos importante exclusión social. Las vías de tratamiento son dispares de ahí que sea crítico acertar en el diagnóstico lo antes posible. Hasta la actualidad, los profesionales y expertos en medicina, utilizan unas escalas cualitativas para diferenciar la patología y su grado de afectación. Dichas escalas también se utilizan para efectuar un seguimiento clínico y registrar la historia del paciente. En esta tesis se propone una serie de métodos de análisis y de identificación/clasificación de los tipos de temblor asociados a la enfermedad de Párkinson y el temblor esencial. Empleando técnicas de inteligencia artificial basadas en clasificadores inteligentes: redes neuronales (MLP y LVQ) y máquinas de soporte vectorial (SVM), a partir del desarrollo e implantación de un sistema para la medida y análisis objetiva del temblor: DIMETER. Dicho sistema además de ser una herramienta eficaz para la ayuda al diagnóstico, presenta también las capacidades necesarias para proporcionar un seguimiento riguroso y fiable de la evolución de cada paciente. ABSTRACT The increase in life expectancy in developed countries in more than 80 years (data belongs to 2013), is assuming considerable growth in the incidence and prevalence of disabling diseases. Although they may appear at an early age, they are more common in the elderly ages or in its vicinity. Nuero-degenerative diseases that are a major functional handicap, as some of them are associated with involuntary movements of certain body parts, especially of the limbs. Everyday tasks such as food intake, dressing, writing, interact with the computer, etc ... can become large debris for people who suffer. Early and accurate diagnosis is crucial for prescribing optimal therapy or treatment. Even taking into account that in many cases, unfortunately the majority, can only act to mitigate the symptoms, not to cure them, at least for now. Nevertheless, early diagnosis may provide the patient a better quality of life for much longer time, so the effort is worth, and much, grief. Sufferers of Parkinson's and essential tremor represent a significant percentage of clinical casuistry in movement disorders that prevent a normal life, leading to physical disability and not least social exclusion. There are various treatment methods, which makes it necessary the immediate diagnosis. Up to date, professionals and medical experts, use a qualitative scale to differentiate the disease and degree of involvement. Therefore, those scales are used in clinical follow-up. In this thesis, several methods of analysis and identification / classification of types of tremor associated with Parkinson's disease and essential tremor are proposed. Using artificial intelligence techniques based on intelligent classification: neural networks (MLP and LVQ) and support vector machines (SVM), starting from the development and implementation of a system for measuring and objective analysis of the tremor: DIMETER. This system besides being an effective tool to aid diagnosis, it also has the necessary capabilities to provide a rigorous and reliable monitoring of the evolution of each patient.