21 resultados para Lateral distortional buckling


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The study of lateral dynamics of running trains on bridges is of importance mainly for the safety of the traffic, and may be relevant for laterally compliant bridges. These studies require threedimensional coupled vehicle-bridge models, wheree consideration of wheel to rail contact is a key aspect. Furthermore, an adequate evaluation of safety of rail traffic requires nonlinear models. A nonlinear coupled model is proposed here for vehicle-structure vertical and lateral dynamics. Vehicles are considered as fully three-dimensional multibody systems including gyroscopic terms and large rotation effects. The bridge structure is modeled by means of finite elements which may be of beam, shell or continuum type and may include geometric or material nonlinearities. The track geometry includes distributed track alignment irregularities. Both subsystems (bridge and vehicles) are described with coordinates in absolute reference frames, as opposed to alternative approaches which describe the multibody system with coordinates relative to the base bridge motion. The wheelrail contact employed is a semi-Hertzian model based on realistic wheel-rail profiles. It allows a detailed geometrical description of the contact patch under each wheel including multiple-point contact, flange contact and uplift. Normal and tangential stresses in each contact are integrated at each time-step to obtain the resultant contact forces. The models have been implemented within an existing finite element analysis software with multibody capabilities, Abaqus (Simulia Ltd., 2010). Further details of the model are presented in Antolín et al. (2012). Representative applications are presented for railway vehicles under lateral wind action on laterally compliant viaducts, showing the relevance of the nonlinear wheel-rail contact model as well as the interaction between bridge and vehicle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The analysis of the running safety of railway vehicles on viaducts subject to strong lateral actions such as cross winds requires coupled nonlinear vehicle-bridge interaction models, capable to study extreme events. In this paper original models developed by the authors are described, based on finite elements for the structure, multibody and finite element models for the vehicle, and specially developed interaction elements for the interface between wheel and rail. The models have been implemented within ABAQUS and have full nonlinear capabilities for the structure, the vehicle and the contact interface. An application is developed for the Ulla Viaduct, a 105 m tall arch in the Spanish high-speed railway network. The dynamic analyses allow obtaining critical wind curves, which define the running safety conditions for a given train in terms of speed of circulation and wind speed

Relevância:

20.00% 20.00%

Publicador:

Resumo:

En la presente tesis, como en todo proceso de optimization, se ha llevado a cabo un análisis previo de los factores determinantes del problema. Para ello, en primer lugar, se ha puesto a punto un proceso teórico-experimental de verificación de la resistencia de las superestructuras de autobuses y autocares sometidas a vuelco lateral. A partir de la definición de dicho proceso, se ha utilizado el mismo para obtener determinados criterios de diseño que permitan mejorar la relación resistencia/peso de cada estructura. Por último, en base a la experiencia adquirida en la elaboración del proceso de verificación, se han planteado posibles enmiendas y aclaraciones que debieran reflejarse en el Reglamento 66. Este desarrollo ha permitido extraer conclusiones relativas a cada uno de los tres aspectos mencionados: proceso de verificación, criterios de diseño y posibles enmiendas, o rectificaciones, aplicables al Rgto

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The stability limit of minimum volume and the breaking dynamics of liquid bridges between nonequal, noncoaxial, circular supporting disks subject to a lateral acceleration were experimentally analyzed by working with liquid bridges of very small dimensions. Experimental results are compared with asymptotic theoretical predictions, with the agreement between experimental results and asymptotic ones being satisfactory

Relevância:

20.00% 20.00%

Publicador:

Resumo:

En los últimos años, podemos darnos cuenta de la importancia que tienen las nuevas aplicaciones de vidrio especialmente en edificios turísticos donde el vértigo juega un papel importante en la visita. Sin embargo los sistemas constructivos no tienen un especial interés porque el vidrio laminado está siempre soportado por otro elemento de acero o incluso vidrio en forma de retícula. En la presente tesis voy a desarrollar una nueva solución de elemento autoportante de vidrio de gran tamaño haciendo seguro el uso del elemento para andar en el aire. El sueño de muchos arquitectos ha sido diseñar un edificio completamente transparente y a mí me gustaría contribuir a este sueño empezando a estudiar un forjado de vidrio como elemento estructural horizontal y para ello debemos cumplir requerimientos de seguridad. Uno de los objetivos es lograr un elemento lo más transparente y esbelto posible para el uso de pasarelas en vestíbulos de edificios. Las referencias construidas son bien conocidas, pero por otro lado Universidades europeas estudian continua estudiando el comportamiento del vidrio con diferentes láminas, adhesivos, apilados, insertos, sistemas de laminado, pretensado, pandeo lateral, seguridad post-rotura y muchos más aspectos necesarios. La metodología llevada a cabo en esta tesis ha sido primeramente diseñar un elemento industrial prefabricado horizontal de vidrio teniendo en cuenta todos los conceptos aprendidos en el estado del arte y la investigación para poder predimensionar el elemento. El siguiente paso será verificar el modelo por medio de cálculo analítico, simulación de elementos finitos y ensayos físicos. Para realizar los ensayos hay un paso intermedio teniendo que cambiar la hipótesis de carga uniforme a carga puntal para realizar el ensayo de flexión a 4 puntos normalizado y además cambiar a escala 1:2 para adaptarse al espacio de ensayo y ser viable económicamente. Finalmente compararé los resultados de tensión y deformación obtenidos por los tres métodos para extraer conclusiones. Sin embargo el problema de la seguridad no ha concluido, tendré que demostrar que el sistema es seguro después de que se produzca la rotura y para ello sólo dispongo de los ensayos como medio de demostración. El diseño es el resultado de la evolución de una viga tipo “I”; cuando es pretensada para obtener más resistencia, aparece el problema de pandeo lateral y éste es solucionado con una viga con sección en “T” cuya unión es resuelta con un cajeado longitudinal en la parte inferior del elemento horizontal. Las alas de éste crecen para recoger las cargas superficiales creando a su vez un punto débil en la unión que a su vez se soluciona duplicando la sección “TT” y haciendo trabajar dicho tablero de forma tan óptima como una viga continua. Dicha sección en vidrio como un único elemento pretensado es algo inédito. Además he diseñado unas escuadras metálicas en los extremos de los nervios como apoyo y placa de pretensión, así como una hendidura curva en el centro de los nervios para alojar los tirantes de acero de modo que al pretensar el tirante la placa corrija al menos la deformación por peso propio. Realizados los cambios geométricos de escala y las simplificaciones en el laminado y el adhesivo se programan la extracción de resultados desde 3 estadios diferentes: Sin pretensión y con pretensión de 750 Kg y de 1000Kg en cada nervio. Por cada estadio y por cada uno de los métodos, cálculo, simulación y ensayos, se extraen los datos de deformación y tensión en el punto medio de un nervio con el objetivo de hacer una comparación de resultados para obtener unas conclusiones, siempre en el campo de la elasticidad. Posteriormente incrementaré la carga hasta el momento de la rotura de la placa y después hasta el colapso teniendo en cuenta el tiempo y demostrando una rotura segura. El vidrio no tendrá un comportamiento plástico pero habrá sido controlado su comportamiento frágil manteniendo una carga y una deformación aceptable. ABSTRACT Over the past few years we have realized the importance of the new technologies regarding the application of glass in new buildings, especially those touristic places were the views and the heights are the reason of the visit. However, the construction systems of these glass platforms are not usually as interesting, because the laminated glass is always held by another steel substructure or even a grid-formed glass element. Throughout this thesis I am going to develop a new solution of a self-bearing element with big dimensions made out of glass, ensuring a safe solution to use as an element to walk on the air. The dream of many architects has been to create a building completely transparent, and I would like to contribute to this idea by making a glass slab as a horizontal structural element, for which we have to meet the security requirements. One of the goals is to achieve an element as transparent and slim as possible for the use in walkways of building lobbies. The glass buildings references are well known, but on the other hand the European Universities study the behaviour of the glass with different interlayers, adhesives, laminating systems, stacking, prestressed, buckling, safety, breakage and post-breakage capacity; and many other necessary aspects. The methodology followed in this thesis has been to first create a horizontal industrial prefabricated horizontal element of glass, taking into account all the concepts learned in the state of art and the investigation to be able to predimension this element. The next step will be to verify this model with an analytic calculus, a finite element modelling simulation and physical tests. To fulfil these tests there is an intermediate step, having to change the load hypothesis from a punctual one to make the test with a four points normalized deflexion, and also the scale of the sample was changed to 1:2 to adapt to the space of the test and make it economically possible. Finally, the results of tension and deformation obtained from the three methods have been compared to make the conclusions. However, the problem with safety has not concluded yet, for I will have to demonstrate that this system is safe even after its breakage, for which I can only use physical tests as a way of demonstration. The design is the result of the evolution of a typical “I” beam, which when it is prestressed to achieve more resistance, the effect of buckling overcomes, and this is solved with a “T” shaped beam, where the union is solved with a longitudinal groove on the inferior part of the horizontal element. The boards of this beam grow to cover the superficial loads, creating at the same time a weak point, which is solved by duplicating the section “TT” and therefore making this board work as optimal as a continuous beam. This glass section as a single prestressed element is unique. After the final design of the “π” glass plate was obtained and the composition of the laminated glass and interlayers has been predimensioned, the last connection elements must be contemplated. I have also designed a square steel shoe at the end of the beams, which will be the base and the prestressed board, as well as a curved slot in the centre of the nerves to accommodate the steel braces so that when this brace prestresses the board, at least the deformation due to its self-weight will be amended. Once I made the geometric changes of the scale and the simplifications on the laminating and the adhesive, the extraction on results overcomes from three different stages: without any pretension, with a pretension of 750 kg and with a pretension of 1000 kg on each rib. For each stage and for each one of the methods, calculus, simulation and tests, the deformation datum were extracted to obtain the conclusions, always in the field of the elasticity. Afterwards, I will increase the load until the moment of breakage of this board, and then until the collapse of the element, taking into account the time spent and demonstrating a safe breakage. The glass will not have a plastic behaviour, but its brittle behaviour has been controlled, keeping an acceptable load and deflection.