20 resultados para Irrigated bean


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Melon is traditionally cultivated in fertigated farmlands in the center of Spain with high inputs of water and N fertilizer. Excess N can have a negative impact, from the economic point of view, since it can diminish the production and quality of the fruit, from the environmental point of view, since it is a very mobile element in the soil and can contaminate groundwater. From health point of view, nitrate can be accumulated in fruit pulp, and, in addition, groundwater is the fundamental supply source of human populations. Best management practices are particularly necessary in this region as many zones have been declared vulnerable to NO3- pollution (Directive 91/676/CEE) During successive years, a melon crop (Cucumis melo L.) was grown under field conditions applying mineral and organic fertilizers under drip irrigation. Different doses of ammonium nitrate were used as well as compost derived from the wine-distillery industry which is relevant in this area. The present study reviews the most common N efficiency indexes under the different management options with a view to maximizing yield and minimizing N loss.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to establish rational nitrogen (N) application and reduce groundwater contamination, a clearer understanding of the N distribution through the growing season and its balance is crucial. Excessive doses of N and/or water applied to fertigated crops involve a substantial risk of aquifer contamination by nitrate; but knowledge of N cycling and availability within the soil could assist in avoiding this excess. In central Spain, the main horticultural fertigated crop is the melon type ?piel de sapo¿ and it is cultivated in vulnerable zones to nitrate pollution (Directive 91/676/CEE). However, until few years ago there were not antecedents related to the optimization of nitrogen fertilization together with irrigation. Water and N footprint are indicators that allow assessing the impact generated by different agricultural practices, so they can be used to improve the management strategies in fertigated crop systems. The water footprint distinguishes between blue water (sources of water applied to the crop, like irrigation and precipitation), green water (water used by the crop and stored in the soil), and it is furthermore possible to quantify the impact of pollution by calculating the grey water, which is defined as the volume of polluted water created from the growing and production of crops. On the other hand, the N footprint considers green N (nitrogen consumed by the crops and stored in the soil), blue N (N available for crop, like N applied with mineral and/or organic fertilizers, N applied with irrigation water and N mineralized during the crop period), whereas grey N is the amount of N-NO3- washed from the soil to the aquifer. All these components are expressed as the ratio between the components of water or N footprint and the yield (m3 t-1 or kg N t-1 respectively). The objetives of this work were to evaluate the impact derivated from the use of different fertilizer practices in a melon crop using water and N footprint.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of inclusion in the diet of different sources of soya bean meal (SBM) on growth performance, total tract apparent digestibility (TTAD) and apparent ileal digestibility (AID) of major dietary components and mucosal ileum morphology were studied in Iberian pigs weaned at 30 days of age. From 30 to 51 days of age (phase I), there was a control diet based on regular soya bean meal (R-SBM; 44% CP) of Argentina (ARG) origin and five extra diets in which a high-protein soya bean meal (HP-SBM; 49% CP) of the USA or ARG origin, either ground (990 ?m) or micronized (60 ?m), or a soya protein concentrate (SPC; 65% CP) substituted the R-SBM. From 51 to 61 days of age (phase II), all pigs were fed a common commercial diet in mash form.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: The effect of regulated deficit irrigation (RDI) on the phytoprostane (PhytoP) content in extra virgin olive (Olea europaea L., cv. Cornicabra) oil (EVOO) was studied. During the 2012 and 2013 seasons, T0 plants were irrigated at 100% ETc, while T1 and T2 plants were irrigated avoiding water deficit during phases I and III of fruit growth and saving water during the non-critical phenological period of pit hardening (phase II), developing amore severewater deficit in T2 plants. In 2013, a fourth treatment (T3) was also performed, which was similar to T2 except that water saving was from the beginning of phase II to 15 days after the end of phase II. RESULTS: 9-F1t-PhytoP, 9-epi-9-F1t-PhytoP, 9-epi-9-D1t-PhytoP, 9-D1t-PhytoP, 16-B1-PhytoP and 9-L1-PhytoP were present in Cornicabra EVOO, and their contents increased in the EVOO fromRDI plants. CONCLUSION: Deficit irrigation during pit hardening or for a further period of 2 weeks thereafter to increase irrigation water saving is clearly critical for EVOO composition because of the enhancement of free PhytoPs, which have potential beneficial effects on human health. The response of individual free PhytoPs to changes in plant water status was not as perceptible as expected, preventing their use as biomarkers of water stress.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Common bean (Phaseolus vulgaris L.) is a leguminous in high demand for human nutrition and a very important agricultural product. Production of common bean is constrained by environmental stresses such as drought. Although conventional plant selection has been used to increase production yield and stress tolerance, drought tolerance selection based on phenotype is complicated by associated physiological, anatomical, cellular, biochemical, and molecular changes. These changes are modulated by differential gene expression. A common method to identify genes associated with phenotypes of interest is the characterization of Single Nucleotide Polymorphims (SNPs) to link them to specific functions. In this work, we selected two drought-tolerant parental lines from Mesoamerica, Pinto Villa, and Pinto Saltillo. The parental lines were used to generate a population of 282 families (F3:5) and characterized by 169 SNPs. We associated the segregation of the molecular markers in our population with phenotypes including flowering time, physiological maturity, reproductive period, plant, seed and total biomass, reuse index, seed yield, weight of 100 seeds, and harvest index in three cultivation cycles. We observed 83 SNPs with significant association (p < 0.0003 after Bonferroni correction) with our quantified phenotypes. Phenotypes most associated were days to flowering and seed biomass with 58 and 44 associated SNPs, respectively. Thirty-seven out of the 83 SNPs were annotated to a gene with a potential function related to drought tolerance or relevant molecular/biochemical functions. Some SNPs such as SNP28 and SNP128 are related to starch biosynthesis, a common osmotic protector; and SNP18 is related to proline biosynthesis, another well-known osmotic protector.