19 resultados para Interpolation map


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we present an adaptive spatio-temporal filter that aims to improve low-cost depth camera accuracy and stability over time. The proposed system is composed by three blocks that are used to build a reliable depth map of static scenes. An adaptive joint-bilateral filter is used to obtain consistent depth maps by jointly considering depth and video information and by adapting its parameters to different levels of estimated noise. Kalman filters are used to reduce the temporal random fluctuations of the measurements. Finally an interpolation algorithm is used to obtain consistent depth maps in the regions where the depth information is not available. Results show that this approach allows to considerably improve the depth maps quality by considering spatio-temporal information and by adapting its parameters to different levels of noise.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study dynamics of the bistable logistic map with delayed feedback, under the influence of white Gaussian noise and periodic modulation applied to the variable. This system may serve as a model to describe population dynamics under finite resources in noisy environment with seasonal fluctuations. While a very small amount of noise has no effect on the global structure of the coexisting attractors in phase space, an intermediate noise totally eliminates one of the attractors. Slow periodic modulation enhances the attractor annihilation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper introduces a road map for ICTs (Information and communication technologies) supporting planning, operation and management of energy systems in smart cities. The road map summarises different elements that form energy systems in cities and proposes research and technical development (RTD) and innovation activities for the development and innovation of ICTs for holistic design, planning and operation of energy systems. In addition, synergies with other ICT systems for smart cities are considered. There are four main target groups for the road map: 1) citizen; 2) building sector; 3) energy sector; and 4) municipality level. As an example for enabling active participation of citizens, the road map proposes how ICT can enable citizens? involvement among others into building design. The building sector roadmap proposes how ICTs can support the planning of buildings and renovations in the future, as well as how to manage building energy systems. The energy sector road map focuses on city?s energy systems and their planning and management, including e.g. demand side management, management of different district level energy systems, energy performance validation and management, energy data models, and smarter use of open energy data. Moreover, the municipality level road map proposes among others ICTs for better integration of city systems and city planning enabling maximised energy efficiency. In addition, one road map section suggests development needs related to open energy data, including among others the use of energy data and the development and harmonisation of energy data models. The road map has been assembled in the READY4SmartCities project (funded by EU 7th Framework Programme), which focuses on the energy system at the city level, consisting of centralised energy systems and connections to the national level energy grids, as well as interconnections to the neighbourhood and building level energy systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The fermentation stage is considered to be one of the critical steps in coffee processing due to its impact on the final quality of the product. The objective of this work is to characterise the temperature gradients in a fermentation tank by multi-distributed, low-cost and autonomous wireless sensors (23 semi-passive TurboTag® radio-frequency identifier (RFID) temperature loggers). Spatial interpolation in polar coordinates and an innovative methodology based on phase space diagrams are used. A real coffee fermentation process was supervised in the Cauca region (Colombia) with sensors submerged directly in the fermenting mass, leading to a 4.6 °C temperature range within the fermentation process. Spatial interpolation shows a maximum instant radial temperature gradient of 0.1 °C/cm from the centre to the perimeter of the tank and a vertical temperature gradient of 0.25 °C/cm for sensors with equal polar coordinates. The combination of spatial interpolation and phase space graphs consistently enables the identification of five local behaviours during fermentation (hot and cold spots).