21 resultados para Infrastructure Management
Application of the agency theory for the analysis of performance-based mechanisms in road management
Resumo:
El WCTR es un congreso de reconocido prestigio internacional en el ámbito de la investigación del transporte, y aunque las actas publicadas están en formato digital y sin ISSN ni ISBN, lo consideramos lo suficientemente importante como para que se considere en los indicadores. This paper develops a model based on agency theory to analyze road management systems (under the different contract forms available today) that employ a mechanism of performance indicators to establish the payment of the agent. The base assumption is that of asymmetric information between the principal (Public Authorities) and the agent (contractor) and the risk aversion of this latter. It is assumed that the principal may only measure the agent?s performance indirectly and by means of certain performance indicators that may be verified by the authorities. In this model there is presumed to be a relation between the efforts made by the agent and the performance level measured by the corresponding indicators, though it is also considered that there may be dispersion between both variables that gives rise to a certain degree of randomness in the contract. An analysis of the optimal contract has been made on the basis of this model and in accordance with a series of parameters that characterize the economic environment and the particular conditions of road infrastructure. As a result of the analysis made, it is considered that an optimal contract should generally combine a fixed component and a payment in accordance with the performance level obtained. The higher the risk aversion of the agent and the greater the marginal cost of public funds, the lower the impact of this performance-based payment. By way of conclusion, the system of performance indicators should be as broad as possible but should not overweight those indicators that encompass greater randomness in their results.
Resumo:
Experimental software engineering includes several processes, the most representative being run experiments, run replications and synthesize the results of multiple replications. Of these processes, only the first is relatively well established in software engineering. Problems of information management and communication among researchers are one of the obstacles to progress in the replication and synthesis processes. Software engineering experimentation has expanded considerably over the last few years. This has brought with it the invention of experimental process support proposals. However, few of these proposals provide integral support, including replication and synthesis processes. Most of the proposals focus on experiment execution. This paper proposes an infrastructure providing integral support for the experimental research process, specializing in the replication and synthesis of a family of experiments. The research has been divided into stages or phases, whose transition milestones are marked by the attainment of their goals. Each goal exactly matches an artifact or product. Within each stage, we will adopt cycles of successive approximations (generateand- test cycles), where each approximation includes a diferent viewpoint or input. Each cycle will end with the product approval.
Resumo:
Esta Tesis aborda los problemas de eficiencia de las redes eléctrica desde el punto de vista del consumo. En particular, dicha eficiencia es mejorada mediante el suavizado de la curva de consumo agregado. Este objetivo de suavizado de consumo implica dos grandes mejoras en el uso de las redes eléctricas: i) a corto plazo, un mejor uso de la infraestructura existente y ii) a largo plazo, la reducción de la infraestructura necesaria para suplir las mismas necesidades energéticas. Además, esta Tesis se enfrenta a un nuevo paradigma energético, donde la presencia de generación distribuida está muy extendida en las redes eléctricas, en particular, la generación fotovoltaica (FV). Este tipo de fuente energética afecta al funcionamiento de la red, incrementando su variabilidad. Esto implica que altas tasas de penetración de electricidad de origen fotovoltaico es perjudicial para la estabilidad de la red eléctrica. Esta Tesis trata de suavizar la curva de consumo agregado considerando esta fuente energética. Por lo tanto, no sólo se mejora la eficiencia de la red eléctrica, sino que también puede ser aumentada la penetración de electricidad de origen fotovoltaico en la red. Esta propuesta conlleva grandes beneficios en los campos económicos, social y ambiental. Las acciones que influyen en el modo en que los consumidores hacen uso de la electricidad con el objetivo producir un ahorro energético o un aumento de eficiencia son llamadas Gestión de la Demanda Eléctrica (GDE). Esta Tesis propone dos algoritmos de GDE diferentes para cumplir con el objetivo de suavizado de la curva de consumo agregado. La diferencia entre ambos algoritmos de GDE reside en el marco en el cual estos tienen lugar: el marco local y el marco de red. Dependiendo de este marco de GDE, el objetivo energético y la forma en la que se alcanza este objetivo son diferentes. En el marco local, el algoritmo de GDE sólo usa información local. Este no tiene en cuenta a otros consumidores o a la curva de consumo agregado de la red eléctrica. Aunque esta afirmación pueda diferir de la definición general de GDE, esta vuelve a tomar sentido en instalaciones locales equipadas con Recursos Energéticos Distribuidos (REDs). En este caso, la GDE está enfocada en la maximización del uso de la energía local, reduciéndose la dependencia con la red. El algoritmo de GDE propuesto mejora significativamente el auto-consumo del generador FV local. Experimentos simulados y reales muestran que el auto-consumo es una importante estrategia de gestión energética, reduciendo el transporte de electricidad y alentando al usuario a controlar su comportamiento energético. Sin embargo, a pesar de todas las ventajas del aumento de auto-consumo, éstas no contribuyen al suavizado del consumo agregado. Se han estudiado los efectos de las instalaciones locales en la red eléctrica cuando el algoritmo de GDE está enfocado en el aumento del auto-consumo. Este enfoque puede tener efectos no deseados, incrementando la variabilidad en el consumo agregado en vez de reducirlo. Este efecto se produce porque el algoritmo de GDE sólo considera variables locales en el marco local. Los resultados sugieren que se requiere una coordinación entre las instalaciones. A través de esta coordinación, el consumo debe ser modificado teniendo en cuenta otros elementos de la red y buscando el suavizado del consumo agregado. En el marco de la red, el algoritmo de GDE tiene en cuenta tanto información local como de la red eléctrica. En esta Tesis se ha desarrollado un algoritmo autoorganizado para controlar el consumo de la red eléctrica de manera distribuida. El objetivo de este algoritmo es el suavizado del consumo agregado, como en las implementaciones clásicas de GDE. El enfoque distribuido significa que la GDE se realiza desde el lado de los consumidores sin seguir órdenes directas emitidas por una entidad central. Por lo tanto, esta Tesis propone una estructura de gestión paralela en lugar de una jerárquica como en las redes eléctricas clásicas. Esto implica que se requiere un mecanismo de coordinación entre instalaciones. Esta Tesis pretende minimizar la cantidad de información necesaria para esta coordinación. Para lograr este objetivo, se han utilizado dos técnicas de coordinación colectiva: osciladores acoplados e inteligencia de enjambre. La combinación de estas técnicas para llevar a cabo la coordinación de un sistema con las características de la red eléctrica es en sí mismo un enfoque novedoso. Por lo tanto, este objetivo de coordinación no es sólo una contribución en el campo de la gestión energética, sino también en el campo de los sistemas colectivos. Los resultados muestran que el algoritmo de GDE propuesto reduce la diferencia entre máximos y mínimos de la red eléctrica en proporción a la cantidad de energía controlada por el algoritmo. Por lo tanto, conforme mayor es la cantidad de energía controlada por el algoritmo, mayor es la mejora de eficiencia en la red eléctrica. Además de las ventajas resultantes del suavizado del consumo agregado, otras ventajas surgen de la solución distribuida seguida en esta Tesis. Estas ventajas se resumen en las siguientes características del algoritmo de GDE propuesto: • Robustez: en un sistema centralizado, un fallo o rotura del nodo central provoca un mal funcionamiento de todo el sistema. La gestión de una red desde un punto de vista distribuido implica que no existe un nodo de control central. Un fallo en cualquier instalación no afecta el funcionamiento global de la red. • Privacidad de datos: el uso de una topología distribuida causa de que no hay un nodo central con información sensible de todos los consumidores. Esta Tesis va más allá y el algoritmo propuesto de GDE no utiliza información específica acerca de los comportamientos de los consumidores, siendo la coordinación entre las instalaciones completamente anónimos. • Escalabilidad: el algoritmo propuesto de GDE opera con cualquier número de instalaciones. Esto implica que se permite la incorporación de nuevas instalaciones sin afectar a su funcionamiento. • Bajo coste: el algoritmo de GDE propuesto se adapta a las redes actuales sin requisitos topológicos. Además, todas las instalaciones calculan su propia gestión con un bajo requerimiento computacional. Por lo tanto, no se requiere un nodo central con un alto poder de cómputo. • Rápido despliegue: las características de escalabilidad y bajo coste de los algoritmos de GDE propuestos permiten una implementación rápida. No se requiere una planificación compleja para el despliegue de este sistema. ABSTRACT This Thesis addresses the efficiency problems of the electrical grids from the consumption point of view. In particular, such efficiency is improved by means of the aggregated consumption smoothing. This objective of consumption smoothing entails two major improvements in the use of electrical grids: i) in the short term, a better use of the existing infrastructure and ii) in long term, the reduction of the required infrastructure to supply the same energy needs. In addition, this Thesis faces a new energy paradigm, where the presence of distributed generation is widespread over the electrical grids, in particular, the Photovoltaic (PV) generation. This kind of energy source affects to the operation of the grid by increasing its variability. This implies that a high penetration rate of photovoltaic electricity is pernicious for the electrical grid stability. This Thesis seeks to smooth the aggregated consumption considering this energy source. Therefore, not only the efficiency of the electrical grid is improved, but also the penetration of photovoltaic electricity into the grid can be increased. This proposal brings great benefits in the economic, social and environmental fields. The actions that influence the way that consumers use electricity in order to achieve energy savings or higher efficiency in energy use are called Demand-Side Management (DSM). This Thesis proposes two different DSM algorithms to meet the aggregated consumption smoothing objective. The difference between both DSM algorithms lie in the framework in which they take place: the local framework and the grid framework. Depending on the DSM framework, the energy goal and the procedure to reach this goal are different. In the local framework, the DSM algorithm only uses local information. It does not take into account other consumers or the aggregated consumption of the electrical grid. Although this statement may differ from the general definition of DSM, it makes sense in local facilities equipped with Distributed Energy Resources (DERs). In this case, the DSM is focused on the maximization of the local energy use, reducing the grid dependence. The proposed DSM algorithm significantly improves the self-consumption of the local PV generator. Simulated and real experiments show that self-consumption serves as an important energy management strategy, reducing the electricity transport and encouraging the user to control his energy behavior. However, despite all the advantages of the self-consumption increase, they do not contribute to the smooth of the aggregated consumption. The effects of the local facilities on the electrical grid are studied when the DSM algorithm is focused on self-consumption maximization. This approach may have undesirable effects, increasing the variability in the aggregated consumption instead of reducing it. This effect occurs because the algorithm only considers local variables in the local framework. The results suggest that coordination between these facilities is required. Through this coordination, the consumption should be modified by taking into account other elements of the grid and seeking for an aggregated consumption smoothing. In the grid framework, the DSM algorithm takes into account both local and grid information. This Thesis develops a self-organized algorithm to manage the consumption of an electrical grid in a distributed way. The goal of this algorithm is the aggregated consumption smoothing, as the classical DSM implementations. The distributed approach means that the DSM is performed from the consumers side without following direct commands issued by a central entity. Therefore, this Thesis proposes a parallel management structure rather than a hierarchical one as in the classical electrical grids. This implies that a coordination mechanism between facilities is required. This Thesis seeks for minimizing the amount of information necessary for this coordination. To achieve this objective, two collective coordination techniques have been used: coupled oscillators and swarm intelligence. The combination of these techniques to perform the coordination of a system with the characteristics of the electric grid is itself a novel approach. Therefore, this coordination objective is not only a contribution in the energy management field, but in the collective systems too. Results show that the proposed DSM algorithm reduces the difference between the maximums and minimums of the electrical grid proportionally to the amount of energy controlled by the system. Thus, the greater the amount of energy controlled by the algorithm, the greater the improvement of the efficiency of the electrical grid. In addition to the advantages resulting from the smoothing of the aggregated consumption, other advantages arise from the distributed approach followed in this Thesis. These advantages are summarized in the following features of the proposed DSM algorithm: • Robustness: in a centralized system, a failure or breakage of the central node causes a malfunction of the whole system. The management of a grid from a distributed point of view implies that there is not a central control node. A failure in any facility does not affect the overall operation of the grid. • Data privacy: the use of a distributed topology causes that there is not a central node with sensitive information of all consumers. This Thesis goes a step further and the proposed DSM algorithm does not use specific information about the consumer behaviors, being the coordination between facilities completely anonymous. • Scalability: the proposed DSM algorithm operates with any number of facilities. This implies that it allows the incorporation of new facilities without affecting its operation. • Low cost: the proposed DSM algorithm adapts to the current grids without any topological requirements. In addition, every facility calculates its own management with low computational requirements. Thus, a central computational node with a high computational power is not required. • Quick deployment: the scalability and low cost features of the proposed DSM algorithms allow a quick deployment. A complex schedule of the deployment of this system is not required.
Resumo:
The paper describes some relevant results of an on-going research aiming to elaborate a methodology to help the mobility management in natural parks, compatible with their protection missions: it has been developed a procedure to reproduce the mobility-environment relationships in various operational conditions. The final purpose is the identification of: a) the effects of various choices in transport planning, both at long term and strategic level; b) the most effective policies of mobility management. The work is articulated in the following steps: 1) definition of protected area on the basis of ecological and socio-economic criteria and legislative constraints; 2) analysis of mobility needs in the protected areas; 3) reconstruction of the state of the art of mobility management in natural parks at European level; 4) analysis of used traffic flows measurement methods; 5) analysis of environmental impacts due to transport systems modelling (air pollution and noise only); 6) identification of mitigation measures to be potentially applied. The whole methodology has been tested and validated on Italian case studies: i) the concerned area has been zoned according to the land-use peculiarities; ii) the local situations of transport infrastructure (roads and parking), services (public transport systems) and rules (traffic regulations) have been mapped with references to physical and functional attributes; iii) the mobility, both systematic and touristic, has been represented in an origin-destination matrix. By means of an assignment model the flows have been distributed and the corresponding average speeds to quantify gaseous and noise emissions was calculated, the criticalities in the reference scenario have been highlighted, as well as some alternative scenarios, including both operational and infrastructural measures have been identified. The comparison between projects and reference scenario allowed the quantification of effects (variation of emissions) for each scenario and a selection of the most effective management actions to be taken.
Resumo:
The final purpose is the identification of: a) the effects of various choices in transport planning, both at long term and strategic level; b) the most effective policies of mobility management. The preliminary work was articulated in the following steps: 1) definition of protected area on the basis of ecological and socio-economic criteria and legislative constraints; 2) analysis of mobility needs in the protected areas; 3) reconstruction of the state of the art of mobility management in natural parks at European level; 4) analysis of used traffic flows measurement methods; 5) analysis of environmental impacts due to transport systems modelling (limited to air pollution and noise); 6) identification of mitigation measures to the potentially applied. The whole methodology has been firstly tested on the case study of the National Park of ?Gran Sasso and Monti della Laga? and further validated on the National Park of ?Gargano?, both located Italy: i) the concerned area has been zoned according to the land-use peculiarities; ii) the local situations of transport infrastructure (roads and parking), services (public transport systems) and rules (traffic regulations) have been mapped with references to physical and functional attributes; iii) the mobility, both systematic and touristic, has been synthetically represented in an origin-destination matrix. By means of an assignment model it has been determined the distribution of flows and the corresponding average speeds to quantify gaseous and noise emissions. On this basis the environmental criticalities in the reference scenario have been highlighted, as well as some alternative scenarios including both operational and infrastructural measures have been identified. The comparison between the projects and the reference scenario allowed the quantification of the effects (variation of emissions) for each scenario and a selection of the most effective management actions to be taken.
Resumo:
The emergence of new horizons in the field of travel assistant management leads to the development of cutting-edge systems focused on improving the existing ones. Moreover, new opportunities are being also presented since systems trend to be more reliable and autonomous. In this paper, a self-learning embedded system for object identification based on adaptive-cooperative dynamic approaches is presented for intelligent sensor’s infrastructures. The proposed system is able to detect and identify moving objects using a dynamic decision tree. Consequently, it combines machine learning algorithms and cooperative strategies in order to make the system more adaptive to changing environments. Therefore, the proposed system may be very useful for many applications like shadow tolls since several types of vehicles may be distinguished, parking optimization systems, improved traffic conditions systems, etc.