28 resultados para Individual-based modeling


Relevância:

40.00% 40.00%

Publicador:

Resumo:

En la actualidad, el seguimiento de la dinámica de los procesos medio ambientales está considerado como un punto de gran interés en el campo medioambiental. La cobertura espacio temporal de los datos de teledetección proporciona información continua con una alta frecuencia temporal, permitiendo el análisis de la evolución de los ecosistemas desde diferentes escalas espacio-temporales. Aunque el valor de la teledetección ha sido ampliamente probado, en la actualidad solo existe un número reducido de metodologías que permiten su análisis de una forma cuantitativa. En la presente tesis se propone un esquema de trabajo para explotar las series temporales de datos de teledetección, basado en la combinación del análisis estadístico de series de tiempo y la fenometría. El objetivo principal es demostrar el uso de las series temporales de datos de teledetección para analizar la dinámica de variables medio ambientales de una forma cuantitativa. Los objetivos específicos son: (1) evaluar dichas variables medio ambientales y (2) desarrollar modelos empíricos para predecir su comportamiento futuro. Estos objetivos se materializan en cuatro aplicaciones cuyos objetivos específicos son: (1) evaluar y cartografiar estados fenológicos del cultivo del algodón mediante análisis espectral y fenometría, (2) evaluar y modelizar la estacionalidad de incendios forestales en dos regiones bioclimáticas mediante modelos dinámicos, (3) predecir el riesgo de incendios forestales a nivel pixel utilizando modelos dinámicos y (4) evaluar el funcionamiento de la vegetación en base a la autocorrelación temporal y la fenometría. Los resultados de esta tesis muestran la utilidad del ajuste de funciones para modelizar los índices espectrales AS1 y AS2. Los parámetros fenológicos derivados del ajuste de funciones permiten la identificación de distintos estados fenológicos del cultivo del algodón. El análisis espectral ha demostrado, de una forma cuantitativa, la presencia de un ciclo en el índice AS2 y de dos ciclos en el AS1 así como el comportamiento unimodal y bimodal de la estacionalidad de incendios en las regiones mediterránea y templada respectivamente. Modelos autorregresivos han sido utilizados para caracterizar la dinámica de la estacionalidad de incendios y para predecir de una forma muy precisa el riesgo de incendios forestales a nivel pixel. Ha sido demostrada la utilidad de la autocorrelación temporal para definir y caracterizar el funcionamiento de la vegetación a nivel pixel. Finalmente el concepto “Optical Functional Type” ha sido definido, donde se propone que los pixeles deberían ser considerados como unidades temporales y analizados en función de su dinámica temporal. ix SUMMARY A good understanding of land surface processes is considered as a key subject in environmental sciences. The spatial-temporal coverage of remote sensing data provides continuous observations with a high temporal frequency allowing the assessment of ecosystem evolution at different temporal and spatial scales. Although the value of remote sensing time series has been firmly proved, only few time series methods have been developed for analyzing this data in a quantitative and continuous manner. In the present dissertation a working framework to exploit Remote Sensing time series is proposed based on the combination of Time Series Analysis and phenometric approach. The main goal is to demonstrate the use of remote sensing time series to analyze quantitatively environmental variable dynamics. The specific objectives are (1) to assess environmental variables based on remote sensing time series and (2) to develop empirical models to forecast environmental variables. These objectives have been achieved in four applications which specific objectives are (1) assessing and mapping cotton crop phenological stages using spectral and phenometric analyses, (2) assessing and modeling fire seasonality in two different ecoregions by dynamic models, (3) forecasting forest fire risk on a pixel basis by dynamic models, and (4) assessing vegetation functioning based on temporal autocorrelation and phenometric analysis. The results of this dissertation show the usefulness of function fitting procedures to model AS1 and AS2. Phenometrics derived from function fitting procedure makes it possible to identify cotton crop phenological stages. Spectral analysis has demonstrated quantitatively the presence of one cycle in AS2 and two in AS1 and the unimodal and bimodal behaviour of fire seasonality in the Mediterranean and temperate ecoregions respectively. Autoregressive models has been used to characterize the dynamics of fire seasonality in two ecoregions and to forecasts accurately fire risk on a pixel basis. The usefulness of temporal autocorrelation to define and characterized land surface functioning has been demonstrated. And finally the “Optical Functional Types” concept has been proposed, in this approach pixels could be as temporal unities based on its temporal dynamics or functioning.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Usability plays an important role to satisfy users? needs. There are many recommendations in the HCI literature on how to improve software usability. Our research focuses on such recommendations that affect the system architecture rather than just the interface. However, improving software usability in aspects that affect architecture increases the analyst?s workload and development complexity. This paper proposes a solution based on model-driven development. We propose representing functional usability mechanisms abstractly by means of conceptual primitives. The analyst will use these primitives to incorporate functional usability features at the early stages of the development process. Following the model-driven development paradigm, these features are then automatically transformed into subsequent steps of development, a practice that is hidden from the analyst.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

INTRODUCTION: Objective assessment of motor skills has become an important challenge in minimally invasive surgery (MIS) training.Currently, there is no gold standard defining and determining the residents' surgical competence.To aid in the decision process, we analyze the validity of a supervised classifier to determine the degree of MIS competence based on assessment of psychomotor skills METHODOLOGY: The ANFIS is trained to classify performance in a box trainer peg transfer task performed by two groups (expert/non expert). There were 42 participants included in the study: the non-expert group consisted of 16 medical students and 8 residents (< 10 MIS procedures performed), whereas the expert group consisted of 14 residents (> 10 MIS procedures performed) and 4 experienced surgeons. Instrument movements were captured by means of the Endoscopic Video Analysis (EVA) tracking system. Nine motion analysis parameters (MAPs) were analyzed, including time, path length, depth, average speed, average acceleration, economy of area, economy of volume, idle time and motion smoothness. Data reduction was performed by means of principal component analysis, and then used to train the ANFIS net. Performance was measured by leave one out cross validation. RESULTS: The ANFIS presented an accuracy of 80.95%, where 13 experts and 21 non-experts were correctly classified. Total root mean square error was 0.88, while the area under the classifiers' ROC curve (AUC) was measured at 0.81. DISCUSSION: We have shown the usefulness of ANFIS for classification of MIS competence in a simple box trainer exercise. The main advantage of using ANFIS resides in its continuous output, which allows fine discrimination of surgical competence. There are, however, challenges that must be taken into account when considering use of ANFIS (e.g. training time, architecture modeling). Despite this, we have shown discriminative power of ANFIS for a low-difficulty box trainer task, regardless of the individual significances between MAPs. Future studies are required to confirm the findings, inclusion of new tasks, conditions and sample population.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

There is now an emerging need for an efficient modeling strategy to develop a new generation of monitoring systems. One method of approaching the modeling of complex processes is to obtain a global model. It should be able to capture the basic or general behavior of the system, by means of a linear or quadratic regression, and then superimpose a local model on it that can capture the localized nonlinearities of the system. In this paper, a novel method based on a hybrid incremental modeling approach is designed and applied for tool wear detection in turning processes. It involves a two-step iterative process that combines a global model with a local model to take advantage of their underlying, complementary capacities. Thus, the first step constructs a global model using a least squares regression. A local model using the fuzzy k-nearest-neighbors smoothing algorithm is obtained in the second step. A comparative study then demonstrates that the hybrid incremental model provides better error-based performance indices for detecting tool wear than a transductive neurofuzzy model and an inductive neurofuzzy model.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Wake effect represents one of the most important aspects to be analyzed at the engineering phase of every wind farm since it supposes an important power deficit and an increase of turbulence levels with the consequent decrease of the lifetime. It depends on the wind farm design, wind turbine type and the atmospheric conditions prevailing at the site. Traditionally industry has used analytical models, quick and robust, which allow carry out at the preliminary stages wind farm engineering in a flexible way. However, new models based on Computational Fluid Dynamics (CFD) are needed. These models must increase the accuracy of the output variables avoiding at the same time an increase in the computational time. Among them, the elliptic models based on the actuator disk technique have reached an extended use during the last years. These models present three important problems in case of being used by default for the solution of large wind farms: the estimation of the reference wind speed upstream of each rotor disk, turbulence modeling and computational time. In order to minimize the consequence of these problems, this PhD Thesis proposes solutions implemented under the open source CFD solver OpenFOAM and adapted for each type of site: a correction on the reference wind speed for the general elliptic models, the semi-parabollic model for large offshore wind farms and the hybrid model for wind farms in complex terrain. All the models are validated in terms of power ratios by means of experimental data derived from real operating wind farms.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The deployment of nodes in Wireless Sensor Networks (WSNs) arises as one of the biggest challenges of this field, which involves in distributing a large number of embedded systems to fulfill a specific application. The connectivity of WSNs is difficult to estimate due to the irregularity of the physical environment and affects the WSN designers? decision on deploying sensor nodes. Therefore, in this paper, a new method is proposed to enhance the efficiency and accuracy on ZigBee propagation simulation in indoor environments. The method consists of two steps: automatic 3D indoor reconstruction and 3D ray-tracing based radio simulation. The automatic 3D indoor reconstruction employs unattended image classification algorithm and image vectorization algorithm to build the environment database accurately, which also significantly reduces time and efforts spent on non-radio propagation issue. The 3D ray tracing is developed by using kd-tree space division algorithm and a modified polar sweep algorithm, which accelerates the searching of rays over the entire space. Signal propagation model is proposed for the ray tracing engine by considering both the materials of obstacles and the impact of positions along the ray path of radio. Three different WSN deployments are realized in the indoor environment of an office and the results are verified to be accurate. Experimental results also indicate that the proposed method is efficient in pre-simulation strategy and 3D ray searching scheme and is suitable for different indoor environments.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper presents an Ontology-Based multi-technology platform designed to avoid some issues of Building Automation Systems. The platform allows the integration of several building automation protocols, eases the development and implementation of different kinds of services and allows sharing information related to the infrastructure and facilities within a building. The system has been implemented and tested in the Energy Efficiency Research Facility at CeDInt-UPM.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In the last decades, neuropsychological theories tend to consider cognitive functions as a result of the whole brainwork and not as individual local areas of its cortex. Studies based on neuroimaging techniques have increased in the last years, promoting an exponential growth of the body of knowledge about relations between cognitive functions and brain structures [1]. However, so fast evolution make complicated to integrate them in verifiable theories and, even more, translated in to cognitive rehabilitation. The aim of this research work is to develop a cognitive process-modeling tool. The purpose of this system is, in the first term, to represent multidimensional data, from structural and functional connectivity, neuroimaging, data from lesion studies and derived data from clinical intervention [2][3]. This will allow to identify consolidated knowledge, hypothesis, experimental designs, new data from ongoing studies and emerging results from clinical interventions. In the second term, we pursuit to use Artificial Intelligence to assist in decision making allowing to advance towards evidence based and personalized treatments in cognitive rehabilitation. This work presents the knowledge base design of the knowledge representation tool. It is compound of two different taxonomies (structure and function) and a set of tags linking both taxonomies at different levels of structural and functional organization. The remainder of the abstract is organized as follows: Section 2 presents the web application used for gathering necessary information for generating the knowledge base, Section 3 describes knowledge base structure and finally Section 4 expounds reached conclusions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

biomecanica de la natación

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The aim of the paper is to discuss the use of knowledge models to formulate general applications. First, the paper presents the recent evolution of the software field where increasing attention is paid to conceptual modeling. Then, the current state of knowledge modeling techniques is described where increased reliability is available through the modern knowledge acquisition techniques and supporting tools. The KSM (Knowledge Structure Manager) tool is described next. First, the concept of knowledge area is introduced as a building block where methods to perform a collection of tasks are included together with the bodies of knowledge providing the basic methods to perform the basic tasks. Then, the CONCEL language to define vocabularies of domains and the LINK language for methods formulation are introduced. Finally, the object oriented implementation of a knowledge area is described and a general methodology for application design and maintenance supported by KSM is proposed. To illustrate the concepts and methods, an example of system for intelligent traffic management in a road network is described. This example is followed by a proposal of generalization for reuse of the resulting architecture. Finally, some concluding comments are proposed about the feasibility of using the knowledge modeling tools and methods for general application design.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper argues about the utility of advanced knowledge-based techniques to develop web-based applications that help consumers in finding products within marketplaces in e-commerce. In particular, we describe the idea of model-based approach to develop a shopping agent that dynamically configures a product according to the needs and preferences of customers. Finally, the paper summarizes the advantages provided by this approach.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Dentro de los materiales estructurales, el magnesio y sus aleaciones están siendo el foco de una de profunda investigación. Esta investigación está dirigida a comprender la relación existente entre la microestructura de las aleaciones de Mg y su comportamiento mecánico. El objetivo es optimizar las aleaciones actuales de magnesio a partir de su microestructura y diseñar nuevas aleaciones. Sin embargo, el efecto de los factores microestructurales (como la forma, el tamaño, la orientación de los precipitados y la morfología de los granos) en el comportamiento mecánico de estas aleaciones está todavía por descubrir. Para conocer mejor de la relación entre la microestructura y el comportamiento mecánico, es necesaria la combinación de técnicas avanzadas de caracterización experimental como de simulación numérica, a diferentes longitudes de escala. En lo que respecta a las técnicas de simulación numérica, la homogeneización policristalina es una herramienta muy útil para predecir la respuesta macroscópica a partir de la microestructura de un policristal (caracterizada por el tamaño, la forma y la distribución de orientaciones de los granos) y el comportamiento del monocristal. La descripción de la microestructura se lleva a cabo mediante modernas técnicas de caracterización (difracción de rayos X, difracción de electrones retrodispersados, así como con microscopia óptica y electrónica). Sin embargo, el comportamiento del cristal sigue siendo difícil de medir, especialmente en aleaciones de Mg, donde es muy complicado conocer el valor de los parámetros que controlan el comportamiento mecánico de los diferentes modos de deslizamiento y maclado. En la presente tesis se ha desarrollado una estrategia de homogeneización computacional para predecir el comportamiento de aleaciones de magnesio. El comportamiento de los policristales ha sido obtenido mediante la simulación por elementos finitos de un volumen representativo (RVE) de la microestructura, considerando la distribución real de formas y orientaciones de los granos. El comportamiento del cristal se ha simulado mediante un modelo de plasticidad cristalina que tiene en cuenta los diferentes mecanismos físicos de deformación, como el deslizamiento y el maclado. Finalmente, la obtención de los parámetros que controlan el comportamiento del cristal (tensiones críticas resueltas (CRSS) así como las tasas de endurecimiento para todos los modos de maclado y deslizamiento) se ha resuelto mediante la implementación de una metodología de optimización inversa, una de las principales aportaciones originales de este trabajo. La metodología inversa pretende, por medio del algoritmo de optimización de Levenberg-Marquardt, obtener el conjunto de parámetros que definen el comportamiento del monocristal y que mejor ajustan a un conjunto de ensayos macroscópicos independientes. Además de la implementación de la técnica, se han estudiado tanto la objetividad del metodología como la unicidad de la solución en función de la información experimental. La estrategia de optimización inversa se usó inicialmente para obtener el comportamiento cristalino de la aleación AZ31 de Mg, obtenida por laminado. Esta aleación tiene una marcada textura basal y una gran anisotropía plástica. El comportamiento de cada grano incluyó cuatro mecanismos de deformación diferentes: deslizamiento en los planos basal, prismático, piramidal hc+ai, junto con el maclado en tracción. La validez de los parámetros resultantes se validó mediante la capacidad del modelo policristalino para predecir ensayos macroscópicos independientes en diferentes direcciones. En segundo lugar se estudió mediante la misma estrategia, la influencia del contenido de Neodimio (Nd) en las propiedades de una aleación de Mg-Mn-Nd, obtenida por extrusión. Se encontró que la adición de Nd produce una progresiva isotropización del comportamiento macroscópico. El modelo mostró que este incremento de la isotropía macroscópica era debido tanto a la aleatoriedad de la textura inicial como al incremento de la isotropía del comportamiento del cristal, con valores similares de las CRSSs de los diferentes modos de deformación. Finalmente, el modelo se empleó para analizar el efecto de la temperatura en el comportamiento del cristal de la aleación de Mg-Mn-Nd. La introducción en el modelo de los efectos non-Schmid sobre el modo de deslizamiento piramidal hc+ai permitió capturar el comportamiento mecánico a temperaturas superiores a 150_C. Esta es la primera vez, de acuerdo con el conocimiento del autor, que los efectos non-Schmid han sido observados en una aleación de Magnesio. The study of Magnesium and its alloys is a hot research topic in structural materials. In particular, special attention is being paid in understanding the relationship between microstructure and mechanical behavior in order to optimize the current alloy microstructures and guide the design of new alloys. However, the particular effect of several microstructural factors (precipitate shape, size and orientation, grain morphology distribution, etc.) in the mechanical performance of a Mg alloy is still under study. The combination of advanced characterization techniques and modeling at several length scales is necessary to improve the understanding of the relation microstructure and mechanical behavior. Respect to the simulation techniques, polycrystalline homogenization is a very useful tool to predict the macroscopic response from polycrystalline microstructure (grain size, shape and orientation distributions) and crystal behavior. The microstructure description is fully covered with modern characterization techniques (X-ray diffraction, EBSD, optical and electronic microscopy). However, the mechanical behaviour of single crystals is not well-known, especially in Mg alloys where the correct parameterization of the mechanical behavior of the different slip/twin modes is a very difficult task. A computational homogenization framework for predicting the behavior of Magnesium alloys has been developed in this thesis. The polycrystalline behavior was obtained by means of the finite element simulation of a representative volume element (RVE) of the microstructure including the actual grain shape and orientation distributions. The crystal behavior for the grains was accounted for a crystal plasticity model which took into account the physical deformation mechanisms, e.g. slip and twinning. Finally, the problem of the parametrization of the crystal behavior (critical resolved shear stresses (CRSS) and strain hardening rates of all the slip and twinning modes) was obtained by the development of an inverse optimization methodology, one of the main original contributions of this thesis. The inverse methodology aims at finding, by means of the Levenberg-Marquardt optimization algorithm, the set of parameters defining crystal behavior that best fit a set of independent macroscopic tests. The objectivity of the method and the uniqueness of solution as function of the input information has been numerically studied. The inverse optimization strategy was first used to obtain the crystal behavior of a rolled polycrystalline AZ31 Mg alloy that showed a marked basal texture and a strong plastic anisotropy. Four different deformation mechanisms: basal, prismatic and pyramidal hc+ai slip, together with tensile twinning were included to characterize the single crystal behavior. The validity of the resulting parameters was proved by the ability of the polycrystalline model to predict independent macroscopic tests on different directions. Secondly, the influence of Neodymium (Nd) content on an extruded polycrystalline Mg-Mn-Nd alloy was studied using the same homogenization and optimization framework. The effect of Nd addition was a progressive isotropization of the macroscopic behavior. The model showed that this increase in the macroscopic isotropy was due to a randomization of the initial texture and also to an increase of the crystal behavior isotropy (similar values of the CRSSs of the different modes). Finally, the model was used to analyze the effect of temperature on the crystal behaviour of a Mg-Mn-Nd alloy. The introduction in the model of non-Schmid effects on the pyramidal hc+ai slip allowed to capture the inverse strength differential that appeared, between the tension and compression, above 150_C. This is the first time, to the author's knowledge, that non-Schmid effects have been reported for Mg alloys.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Perceptual voice evaluation according to the GRBAS scale is modelled using a linear combination of acoustic parameters calculated after a filter-bank analysis of the recorded voice signals. Modelling results indicate that for breathiness and asthenia more than 55% of the variance of perceptual rates can be explained by such a model, with only 4 latent variables. Moreover, the greatest part of the explained variance can be attributed to only one or two latent variables similarly weighted by all 5 listeners involved in the experiment. Correlation factors between actual rates and model predictions around 0.6 are obtained.