48 resultados para III-V Semiconductors


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we present the results and analysis of a 10 MeV proton irradiation experiment performed on III-V semiconductor materials and solar cells. A set of representative devices including lattice-matched InGaP/GaInAs/Ge triple junction solar cells and single junction GaAs and InGaP component solar cells and a Ge diode were irradiated for different doses. The devices were studied in-situ before and after each exposure at dark and 1 sun AM0 illumination conditions, using a solar simulator connected to the irradiation chamber through a borosilicate glass window. Ex-situ characterization techniques included dark and 1 sun AM0 illumination I-V measurements. Furthermore, numerical simulation of the devices using D-AMPS-1D code together with calculations based on the TRIM software were performed in order to gain physical insight on the experimental results. The experiment also included the proton irradiation of an unprocessed Ge solar cell structure as well as the irradiation of a bare Ge(100) substrate. Ex-situ material characterization, after radioactive deactivation of the samples, includes Raman spectroscopy and spectral reflectivity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In high quality solar cells, the internal luminescence can be harnessed to enhance the overall performance. Internal confinement of the photons can lead to an increased open-circuit voltage and short-circuit current. Alternatively, in multijunction solar cells the photons can be coupled from a higher bandgap junction to a lower bandgap junction for enhanced performance. We model the solar cell as an optical cavity and compare calculated performance characteristics with measurements. We also describe how very high luminescent coupling alleviates the need for top-cell thinning to achieve current-matching.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vicinal Ge(100) is the common substrate for state of the art multi-junction solar cells grown by metal-organic vapor phase epitaxy (MOVPE). While triple junction solar cells based on Ge(100) present efficiencies mayor que 40%, little is known about the microscopic III-V/Ge(100) nucleation and its interface formation. A suitable Ge(100) surface preparation prior to heteroepitaxy is crucial to achieve low defect densities in the III-V epilayers. Formation of single domain surfaces with double layer steps is required to avoid anti-phase domains in the III-V films. The step formation processes in MOVPE environment strongly depends on the major process parameters such as substrate temperature, H2 partial pressure, group V precursors [1], and reactor conditions. Detailed investigation of these processes on the Ge(100) surface by ultrahigh vacuum (UHV) based standard surface science tools are complicated due to the presence of H2 process gas. However, in situ surface characterization by reflection anisotropy spectroscopy (RAS) allowed us to study the MOVPE preparation of Ge(100) surfaces directly in dependence on the relevant process parameters [2, 3, 4]. A contamination free MOVPE to UHV transfer system [5] enabled correlation of the RA spectra to results from UHV-based surface science tools. In this paper, we established the characteristic RA spectra of vicinal Ge(100) surfaces terminated with monohydrides, arsenic and phosphorous. RAS enabled in situ control of oxide removal, H2 interaction and domain formation during MOVPE preparation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work the failure analysis carried out in III-V concentrator multijunction solar cells after a temperature accelerated life test is presented. All the failures appeared have been catastrophic since all the solar cells turned into low shunt resistances. A case study in failure analysis based on characterization by optical microscope, SEM, EDX, EQE and XPS is presented in this paper, revealing metal deterioration in the bus bar and fingers as well as cracks in the semiconductor structure beneath or next to the bus bar. In fact, in regions far from the bus bar the semiconductor structure seems not to be damaged. SEM images have dismissed the presence of metal spikes inside the solar cell structure. Therefore, we think that for these particular solar cells, failures appear mainly as a consequence of a deficient electrolytic growth of the front metallization which also results in failures in the semiconductor structure close to the bus bars.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Progressing beyond 3-junction inverted-metamorphic multijunction solar cells grown on GaAs substrates, to 4-junction devices, requires the development of high quality metamorphic 0.7 eV GaInAs solar cells. Once accomplished, the integration of this subcell into a full, Monolithic, series connected, 4J-IMM structure demands the development of a metamorphic tunnel junction lattice matched to the 1eV GaInAs subcell. Moreover, the 0.7 eV junction adds about 2 hours of growth time to the structure, implying a heavier annealing of the subcells and tunnel junctions grown first. The final 4J structure is above 20 Pm thick, with about half of this thickness used by the metamorphic buffers required to change the lattice constant throughout the structure. Thinning of these buffers would help reduce the total thickness of the 4J structure to decrease its growth cost and the annealing time. These three topics: development of a metamorphic tunnel junction for the 4th junction, analysis of the annealing, and thinning of the structure, are tackled in this work. The results presented show the successful implementation of an antimonide-based tunnel junction for the 4th junction and of pathways to mitigate the impact of annealing and reduce the thickness of the metamorphic buffers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nonradiative recombination in inverted GaInP junctions is dramatically reduced using a rear-heterojunction design rather than the more traditional thin-emitter homojunction design. When this GaInP junction design is included in inverted multijunction solar cells, the high radiative efficiency translates into both higher subcell voltage and high luminescence coupling to underlying subcells, both of which contribute to improved performance. Subcell voltages within two and four junction devices are measured by electroluminescence and the internal radiative efficiency is quantified as a function of recombination current using optical modeling. The performance of these concentrator multijunction devices is compared with the Shockley–Queisser detailed-balance radiative limit, as well as an internal radiative limit, which considers the effects of the actual optical environment in which a perfect junction may exist.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

SUMMARY Concentration Photovoltaic Systems (CPV) have been proposed as an alternative to conventional systems. During the last years, there has been a boom of the CPV industry caused by the technological progress in all the elements of the system. and mainly caused by the use of multijunction solar cells based on III-V semiconductors, with efficiencies exceeding to 43%. III-V solar cells have been used with high reliability results in a great number of space missions without concentration. However, there are no previous results regarding their reliability in concentration terrestrial applications, where the working conditions are completely different. This lack of experience, together with the important industrial interest, has generated the need to evaluate the reliability of the cells. For this reason, nowadays there are several research centers around the undertaking this task. The evaluation of the reliability of this type of devices by means of accelerated tests is especially problematic when they work at medium or high concentration, because it is practically impossible to emulate real working conditions of the cell inside climatic chambers. In fact, as far as we know, the results that appear in this Thesis are the first estimating the Activation Energy of the failure mechanism involved, as well as the warranty of the III-V concentrator solar cells tested here. To evaluate the reliability of III-V very high concentrator solar cells by means of accelerated tests, a variety of activities, described in this Thesis have been carried out. The First Part of the memory presents the theoretical part of the Doctoral Thesis. After the Introduction, chapter 2 presents the state of the art in degradation and reliability of CPV systems and solar cells. Chapter 3 introduces some reliability definitions and the application of specific statistical functions to the evaluation of the reliability and parameters. From these functions, important parameters will be calculated to be used later in the experimental results of Thesis. The Second Part of the memory contains the experimental. Chapter 4 shows the types of accelerated tests and the main goals pursuit with them when carried out over CPV systems and solar cells. In order to evaluate quantitatively the reliability of the III-V concentrator solar cells used in these tests, some modifications have been introduced which discussion will be tackled here. Based on this analysis the working plan of the tests carried out in this Doctoral Thesis is presented. Chapter 5 presents a new methodology as well as the necessary instrumentation to carry out the tests described here. This new methodology takes into account the adaptation, improvement and novel techniques needed to test concentrator solar cells. The core of this memory is chapter 6, which presents the results of the characterization of the cells during the accelerated life tests and the analysis of the aforementioned results with the purpose of getting quantitative values of reliability in real working conditions. The acceleration factor of the accelerated life tests, under nominal working conditions has been calculated. Accordingly, the validity of the methodology as well as the calculations based on the reliability assessment, have also been demonstrated. Finally, quantitative values of degradation, reliability and warranty of the solar cells under field nominal working conditions have been calculated. With the development of this Doctoral Thesis the reliability of very high concentrator GaAs solar cells of small area has been evaluated. It is very interesting to generalize the procedures described up to this point to III-V multijunction solar cells of greater area. Therefore, chapter 7 develops this generalization and introduces also a useful thermal modeling by means of finite elements of the test cells’ circuits. In the last chapter, the summary of the results and the main contributions of this Thesis are outlined and future research activities are identified. RESUMEN Los Sistemas Fotovoltaicos de Concentración (SFC) han sido propuestos como una alternativa a los sistemas convencionales de generación de energía. Durante los últimos años ha habido un auge de los SFC debido a las mejoras tecnológicas en todos los elementos del sistema, y principalmente por el uso de células multiunión III-V que superan el 43% de rendimiento. Las células solares III-V han sido utilizadas con elevada fiabilidad en aplicaciones espaciales sin concentración, pero no existe experiencia de su fiabilidad en ambiente terrestre a altos niveles de concentración solar. Esta falta de experiencia junto al gran interés industrial ha generado la necesidad de evaluar la fiabilidad de las células, y actualmente hay un significativo número de centros de investigación trabajando en esta área. La evaluación de la fiabilidad de este tipo de dispositivos mediante ensayos acelerados es especialmente problemática cuando trabajan a media o alta concentración por la casi imposibilidad de emular las condiciones de trabajo reales de la célula dentro de cámaras climáticas. De hecho, que sepamos, en los resultados de esta Tesis se evalúa por primera vez la Energía de Activación del mecanismo de fallo de las células, así como la garantía en campo de las células de concentración III-V analizadas. Para evaluar la fiabilidad de células solares III-V de muy alta concentración mediante ensayos de vida acelerada se han realizado diversas actividades que han sido descritas en la memoria de la Tesis. En la Primera Parte de la memoria se presenta la parte teórica de la Tesis Doctoral. Tras la Introducción, en el capítulo 2 se muestra el estado del arte en degradación y fiabilidad de células y Sistemas Fotovoltaicos de Concentración. En el capítulo 3 se exponen de forma resumida las definiciones de fiabilidad y funciones estadísticas que se utilizan para la evaluación de la fiabilidad y sus parámetros, las cuales se emplearán posteriormente en los ensayos descritos en este Tesis. La Segunda Parte de la memoria es experimental. En el capítulo 4 se describen los tipos y objetivos de los ensayos acelerados actualmente aplicados a SFC y a las células, así como las modificaciones necesarias que permitan evaluar cuantitativamente la fiabilidad de las células solares de concentración III-V. En base a este análisis se presenta la planificación de los trabajos realizados en esta Tesis Doctoral. A partir de esta planificación y debido a la necesidad de adaptar, mejorar e innovar las técnicas de ensayos de vida acelerada para una adecuada aplicación a este tipo de dispositivos, en el capítulo 5 se muestra la metodología empleada y la instrumentación necesaria para realizar los ensayos de esta Tesis Doctoral. El núcleo de la memoria es el capítulo 6, en él se presentan los resultados de caracterización de las células durante los ensayos de vida acelerada y el análisis de dichos resultados con el objetivo de obtener valores cuantitativos de fiabilidad en condiciones reales de trabajo. Se calcula el Factor de Aceleración de los ensayos acelerados con respecto a las condiciones nominales de funcionamiento a partir de la Energía de Activación obtenida, y se demuestra la validez de la metodología y cálculos empleados, que son la base de la evaluación de la fiabilidad. Finalmente se calculan valores cuantitativos de degradación, fiabilidad y garantía de las células en condiciones nominales en campo durante toda la vida de la célula. Con el desarrollo de esta Tesis Doctoral se ha evaluado la fiabilidad de células III-V de área pequeña, pero es muy interesante generalizar los procedimientos aquí desarrollados para las células III-V comerciales de área grande. Por este motivo, en el capítulo 7 se analiza dicha generalización, incluyendo el modelado térmico mediante elementos finitos de los circuitos de ensayo de las células. En el último capítulo se realiza un resume del trabajo y las aportaciones realizadas, y se identifican las líneas de trabajo a emprender en el futuro.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Among the different optical modulator technologies available such as polymer, III-V semiconductors, Silicon, the well-known Lithium Niobate (LN) offers the best trade-off in terms of performances, ease of use, and power handling capability [1-9]. The LN technology is still widely deployed within the current high data rate fibre optic communications networks. This technology is also the most mature and guarantees the reliability which is required for space applications [9].In or der to fulfil the target specifications of opto-microwave payloads, an optimization of the design of a Mach-Zehnder (MZ) modulator working at the 1500nm telecom wavelength was performed in the frame of the ESA-ARTES "Multi GigaHertz Optical Modulator" (MGOM) project in order to reach ultra-low optical insertion loss and low effective driving voltage in the Ka band. The selected modulator configuration was the X-cut crystal orientation, associated to high stability Titanium in-diffusion process for the optical waveguide. Starting from an initial modulator configuration exhibiting 9 V drive voltage @ 30 GHz, a complete redesign of the coplanar microwave electrodes was carried out in order to reach a 6 V drive voltage @ 30GHz version. This redesign was associated to an optimization of the interaction between the optical waveguide and the electrodes. Following the optimisation steps, an evaluation program was applied on a lot of 8 identical modulators. A full characterisation was carried out to compare performances, showing small variations between the initial and final functional characteristics. In parallel, two similar modulators were submitted to both gamma (10-100 krad) and proton irradiation (10.109 p/cm²) with minor performance degradation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

El interés por los sistemas fotovoltaicos de concentración (CPV) ha resurgido en los últimos años amparado por el desarrollo de células multiunión de muy alta eficiencia basadas en semiconductores de los grupos III-V. Estas células han permitido obtener módulos de concentración con eficiencias que prácticamente duplican las del panel plano y que llegan al 35% en los módulos récord. Esta tesis está dedicada al diseño y la implementación experimental de nuevos conceptos que permitan obtener módulos CPV que no sólo alcancen una eficiencia alta en condiciones estándar sino que, además, sean lo suficientemente tolerantes a errores de montaje, seguimiento, temperatura y variaciones espectrales para que la energía que producen a lo largo del año sea máxima. Una de las primeras cuestiones que se abordan es el diseño de elementos ópticos secundarios para sistemas cuyo primario es una lente de Fresnel y que permiten, para una concentración fija, aumentar el ángulo de aceptancia y la tolerancia del sistema. Varios secundarios reflexivos y refractivos han sido diseñados y analizados mediante trazado de rayos. En particular, utilizando óptica anidólica y basándose en el diseño de una sola etapa conocido como ‘concentrador dieléctrico que funciona por reflexión total interna‘, se ha diseñado, fabricado y caracterizado un secundario con salida cuadrada que, usado junto con una lente de Fresnel, permite alcanzar simultáneamente una elevada eficiencia, concentración y aceptancia. Además, se ha propuesto y prototipado un método alternativo de fabricación para otro de los secundarios, denominado domo, consistente en el sobremoldeo de silicona sobre células solares. Una de las características que impregna todo el trabajo realizado en esta tesis es la aproximación holística en el diseño de módulos CPV, es decir, se ha prestado especial atención al diseño conjunto de la célula y la óptica para garantizar que el sistema total alcance la mayor eficiencia posible. En este sentido muchos sistemas ópticos desarrollados en esta tesis han sido diseñados, caracterizados y optimizados teniendo en cuenta que el ajuste de corriente entre las distintas subcélulas que comprenden la célula multiunión bajo el concentrador sea muy próximo a uno. La capa antirreflectante sobre la célula funciona, en cierto modo, como interfaz entre la óptica y la célula, por lo que se ha diseñado un método de optimización de capas antirreflectantes que considera no sólo el amplio rango de longitudes de onda para el que las células multiunión son sensibles sino también la distribución angular de intensidad sobre la célula creada por la óptica de concentración. Además, la cuestión de la falta de uniformidad también se ha abordado mediante la comparación de las distribuciones espectrales y espaciales de irradiancia que crean diferentes ópticas (simuladas mediante trazado de rayos y fotografiadas) y las pérdidas de eficiencia que experimentan las células iluminadas por dichas ópticas de concentración medidas experimentalmente. El efecto de la temperatura en la óptica de concentración también ha sido objeto de estudio de esta tesis. En particular, mediante simulaciones de elementos finitos se han dado los primeros pasos para el análisis de las deformaciones que sufren los dientes de las lentes de Fresnel híbridas (vidrio-silicona), así como el cambio de índice de refracción con la temperatura y la influencia de ambos efectos sobre el funcionamiento de los sistemas. Se ha implementado un modelo que tiene por objeto considerar las variaciones ambientales, principalmente temperatura y contenido espectral de la radiación directa, así como las sensibilidades térmica y espectral de los sistemas CPV, con el fin de maximizar la energía producida por un módulo de concentración a lo largo de un año en un emplazamiento determinado. Los capítulos 5 y 6 de este libro están dedicados al diseño, fabricación y caracterización de un nuevo concepto de módulo fotovoltaico denominado FluidReflex y basado en una única etapa reflexiva con dieléctrico fluido. En este nuevo concepto la presencia del fluido aporta algunas ventajas significativas como son: un aumento del producto concentración por aceptancia (CAP, en sus siglas en inglés) alcanzable al rodear la célula con un medio cuyo índice de refracción es mayor que uno, una mejora de la eficiencia óptica al disminuir las pérdidas por reflexión de Fresnel en varias interfaces, una mejora de la disipación térmica ya que el calor que se concentra junto a la célula se trasmite por convección natural y conducción en el fluido y un aislamiento eléctrico mejorado. Mediante la construcción y medida de varios prototipos de unidad elemental se ha demostrado que no existe ninguna razón fundamental que impida la implementación práctica del concepto teórico alcanzando una elevada eficiencia. Se ha realizado un análisis de fluidos candidatos probando la existencia de al menos dos de ellos que cumplen todos los requisitos (en particular el de estabilidad bajo condiciones de luz concentrada) para formar parte del sistema de concentración FluidReflex. Por ´ultimo, se han diseñado, fabricado y caracterizado varios prototipos preindustriales de módulos FluidReflex para lo cual ha sido necesario optimizar el proceso de fabricación de la óptica multicavidad a fin de mantener el buen comportamiento óptico obtenido en la fabricación de la unidad elemental. Los distintos prototipos han sido medidos, tanto en el laboratorio como bajo el sol real, analizando el ajuste de corriente de la célula iluminada por el concentrador FluidReflex bajo diferentes distribuciones espectrales de la radiación incidente así como el excelente comportamiento térmico del módulo. ABSTRACT A renewed interest in concentrating photovoltaic (CPV) systems has emerged in recent years encouraged by the development of high-efficiency multijunction solar cells based in IIIV semiconductors that have led to CPV module efficiencies which practically double that of flat panel PV and which reach 35% for record modules. This thesis is devoted to the design and experimental implementation of new concepts for obtaining CPV modules that not only achieve high efficiency under standard conditions but also have such a wide tolerance to assembly errors, tracking, temperature and spectral variations, that the energy generated by them throughout the year is maximized. One of the first addressed issues is the design of secondary optical elements whose primary optics is a Fresnel lens and which, for a fixed concentration, allow an increased acceptance angle and tolerance of the system. Several reflective and refractive secondaries have been designed and analyzed using ray tracing. In particular, using nonimaging optics and based on the single-stage design known as ‘dielectric totally internally reflecting concentrator’, a secondary with square output has been designed, fabricated and characterized. Used together with a Fresnel lens, the secondary can simultaneously achieve high efficiency, concentration and acceptance. Furthermore, an alternative method has been proposed and prototyped for the fabrication of the secondary named dome. The optics is manufactured by direct overmolding of silicone over the solar cells. One characteristic that permeates all the work done in this thesis is the holistic approach in the design of CPV modules, meaning that special attention has been paid to the joint design of the solar cell and the optics to ensure that the total system achieves the highest attainable efficiency. In this regard, many optical systems developed in the thesis have been designed, characterized and optimized considering that the current matching among the subcells within the multijunction solar cell beneath the optics must be close to one. Antireflective coating over the cell acts, somehow, as an interface between the optics and the cell. Consequently, a method has been designed to optimize antireflective coatings that takes into account not only the broad wavelength range that multijunction solar cells are sensitive to but also the angular intensity distribution created by the concentrating optics. In addition, the issue of non-uniformity has also been addressed by comparing the spectral and spatial distributions of irradiance created by different optics (simulated by ray tracing and photographed) and the efficiency losses experienced by cells illuminated by those concentrating optics experimentally determined. The effect of temperature on the concentrating optics has also been studied in this thesis. In particular, finite element simulations have been use to analyze the deformations experienced by the facets of hybrid (silicon-glass) Fresnel lenses, the change of refractive index with temperature and the influence of both effects on the system performance. A model has been implemented which take into consideration atmospheric variations, mainly temperature and spectral content of the direct normal irradiance, as well as thermal and spectral sensitivities of systems, with the aim of maximizing the energy harvested by a CPV module throughout the year in a particular location. Chapters 5 and 6 of this book are devoted to the design, fabrication, and characterization of a new concentrator concept named FluidReflex and based on a single-stage reflective optics with fluid dielectric. In this new concept, the presence of the fluid provides some significant advantages such as: an increased concentration acceptance angle product (CAP) achievable by surrounding the cell with a medium whose refractive index is greater than one, an improvement of the optical efficiency by reducing losses due to Fresnel reflection at several interfaces, an improvement in heat dissipation as the heat concentrated near the cell is transmitted by natural convection and conduction in the fluid, and an improved electrical insulation. By fabricating and characterizing several elementary-unit prototypes it was shown that there is no fundamental reason that prevents the practical implementation of this theoretical concept reaching high efficiency. Several fluid candidates were investigated proving the existence of at least to fluids that meet all the requirements (including the stability under concentrated light) to become part of the FluidReflex concentrator. Finally, several pre-industrial FluidReflex module prototypes have been designed and fabricated. An optimization process for the manufacturing of the multicavity optics was necessary to attain such an optics quality as the one achieved by the single unit. The module prototypes have been measured, both indoors and outdoors, analyzing the current matching of the solar cells beneath the concentrator for different spectral distribution of the incident irradiance. Additionally, the module showed an excellent thermal performance.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

El objetivo de este trabajo es un estudio profundo del crecimiento selectivo de nanoestructuras de InGaN por epitaxia de haces moleculares asistido por plasma, concentrandose en el potencial de estas estructuras como bloques constituyentes en LEDs de nueva generación. Varias aproximaciones al problema son discutidas; desde estructuras axiales InGaN/GaN, a estructuras core-shell, o nanoestructuras crecidas en sustratos con orientaciones menos convencionales (semi polar y no polar). La primera sección revisa los aspectos básicos del crecimiento auto-ensamblado de nanocolumnas de GaN en sustratos de Si(111). Su morfología y propiedades ópticas son comparadas con las de capas compactas de GaN sobre Si(111). En el caso de las columnas auto-ensambladas de InGaN sobre Si(111), se presentan resultados sobre el efecto de la temperatura de crecimiento en la incorporación de In. Por último, se discute la inclusión de nanodiscos de InGaN en las nanocolumnas de GaN. La segunda sección revisa los mecanismos básicos del crecimiento ordenado de nanoestructuras basadas en GaN, sobre templates de GaN/zafiro. Aumentando la relación III/V localmente, se observan cambios morfológicos; desde islas piramidales, a nanocolumnas de GaN terminadas en planos semipolares, y finalmente, a nanocolumnas finalizadas en planos c polares. Al crecer nanodiscos de InGaN insertados en las nanocolumnas de GaN, las diferentes morfologias mencionadas dan lugar a diferentes propiedades ópticas de los nanodiscos, debido al diferente carácter (semi polar o polar) de los planos cristalinos involucrados. La tercera sección recoge experimentos acerca de los efectos que la temperatura de crecimiento y la razón In/Ga tienen en la morfología y emisión de nanocolumnas ordenadas de InGaN crecidas sobre templates GaN/zafiro. En el rango de temperaturas entre 650 y 750 C, la incorporacion de In puede modificarse bien por la temperatura de crecimiento, o por la razón In/Ga. Controlar estos factores permite la optimización de la longitud de onda de emisión de las nanocolumnas de InGaN. En el caso particular de la generación de luz blanca, se han seguidos dos aproximaciones. En la primera, se obtiene emisión amarilla-blanca a temperatura ambiente de nanoestructuras donde la región de InGaN consiste en un gradiente de composiciones de In, que se ha obtenido a partir de un gradiente de temperatura durante el crecimiento. En la segunda, el apilamiento de segmentos emitiendo en azul, verde y rojo, consiguiendo la integración monolítica de estas estructuras en cada una de las nanocolumnas individuales, da lugar a emisores ordenados con un amplio espectro de emisión. En esta última aproximación, la forma espectral puede controlarse con la longitud (duración del crecimiento) de cada uno de los segmentos de InGaN. Más adelante, se presenta el crecimiento ordenado, por epitaxia de haces moleculares, de arrays de nanocolumnas que son diodos InGaN/GaN cada una de ellas, emitiendo en azul (441 nm), verde (502 nm) y amarillo (568 nm). La zona activa del dispositivo consiste en una sección de InGaN, de composición constante nominalmente y longitud entre 250 y 500 nm, y libre de defectos extendidos en contraste con capas compactas de InGaN de similares composiciones y espesores. Los espectros de electroluminiscencia muestran un muy pequeño desplazamiento al azul al aumentar la corriente inyectada (desplazamiento casi inexistente en el caso del dispositivo amarillo), y emisiones ligeramente más anchas que en el caso del estado del arte en pozos cuánticos de InGaN. A continuación, se presenta y discute el crecimiento ordenado de nanocolumnas de In(Ga)N/GaN en sustratos de Si(111). Nanocolumnas ordenadas emitiendo desde el ultravioleta (3.2 eV) al infrarrojo (0.78 eV) se crecieron sobre sustratos de Si(111) utilizando una capa compacta (“buffer”) de GaN. La morfología y eficiencia de emisión de las nanocolumnas emitiendo en el rango espectral verde pueden ser mejoradas ajustando las relaciones In/Ga y III/N, y una eficiencia cuántica interna del 30% se deriva de las medidas de fotoluminiscencia en nanocolumnas optimizadas. En la siguiente sección de este trabajo se presenta en detalle el mecanismo tras el crecimiento ordenado de nanocolumnas de InGaN/GaN emitiendo en el verde, y sus propiedades ópticas. Nanocolumnas de InGaN/GaN con secciones largas de InGaN (330-830 nm) se crecieron tanto en sustratos GaN/zafiro como GaN/Si(111). Se encuentra que la morfología y la distribución espacial del In dentro de las nanocolumnas dependen de las relaciones III/N e In/Ga locales en el frente de crecimiento de las nanocolumnas. La dispersión en el contenido de In entre diferentes nanocolumnas dentro de la misma muestra es despreciable, como indica las casi identicas formas espectrales de la catodoluminiscencia de una sola nanocolumna y del conjunto de ellas. Para las nanocolumnas de InGaN/GaN crecidas sobre GaN/Si(111) y emitiendo en el rango espectral verde, la eficiencia cuántica interna aumenta hasta el 30% al disminuir la temperatura de crecimiento y aumentar el nitrógeno activo. Este comportamiento se debe probablemente a la formación de estados altamente localizados, como indica la particular evolución de la energía de fotoluminiscencia con la temperatura (ausencia de “s-shape”) en muestras con una alta eficiencia cuántica interna. Por otro lado, no se ha encontrado la misma dependencia entre condiciones de crecimiento y efiencia cuántica interna en las nanoestructuras InGaN/GaN crecidas en GaN/zafiro, donde la máxima eficiencia encontrada ha sido de 3.7%. Como alternativa a las nanoestructuras axiales de InGaN/GaN, la sección 4 presenta resultados sobre el crecimiento y caracterización de estructuras core-shell de InGaN/GaN, re-crecidas sobre arrays de micropilares de GaN fabricados por ataque de un template GaN/zafiro (aproximación top-down). El crecimiento de InGaN/GaN es conformal, con componentes axiales y radiales en el crecimiento, que dan lugar a la estructuras core-shell con claras facetas hexagonales. El crecimiento radial (shell) se ve confirmado por medidas de catodoluminiscencia con resolución espacial efectuadas en un microscopio electrónico de barrido, asi como por medidas de microscopía de transmisión de electrones. Más adelante, el crecimiento de micro-pilares core-shell de InGaN se realizó en pilares GaN (cores) crecidos selectivamente por epitaxia de metal-orgánicos en fase vapor. Con el crecimiento de InGaN se forman estructuras core-shell con emisión alrededor de 3 eV. Medidas de catodoluminiscencia resuelta espacialmente indican un aumento en el contenido de indio del shell en dirección a la parte superior del pilar, que se manifiesta en un desplazamiento de la emisión de 3.2 eV en la parte inferior, a 3.0 eV en la parte superior del shell. Este desplazamiento está relacionado con variaciones locales de la razón III/V en las facetas laterales. Finalmente, se demuestra la fabricación de una estructura pin basada en estos pilares core-shell. Medidas de electroluminiscencia resuelta espacialmente, realizadas en pilares individuales, confirman que la electroluminiscencia proveniente del shell de InGaN (diodo lateral) está alrededor de 3.0 eV, mientras que la emisión desde la parte superior del pilar (diodo axial) está alrededor de 2.3 eV. Para finalizar, se presentan resultados sobre el crecimiento ordenado de GaN, con y sin inserciones de InGaN, en templates semi polares (GaN(11-22)/zafiro) y no polares (GaN(11-20)/zafiro). Tras el crecimiento ordenado, gran parte de los defectos presentes en los templates originales se ven reducidos, manifestándose en una gran mejora de las propiedades ópticas. En el caso de crecimiento selectivo sobre templates con orientación GaN(11-22), no polar, la formación de nanoestructuras con una particular morfología (baja relación entre crecimiento perpedicular frente a paralelo al plano) permite, a partir de la coalescencia de estas nanoestructuras, la fabricación de pseudo-templates no polares de GaN de alta calidad. ABSTRACT The aim of this work is to gain insight into the selective area growth of InGaN nanostructures by plasma assisted molecular beam epitaxy, focusing on their potential as building blocks for next generation LEDs. Several nanocolumn-based approaches such as standard axial InGaN/GaN structures, InGaN/GaN core-shell structures, or InGaN/GaN nanostructures grown on semi- and non-polar substrates are discussed. The first section reviews the basics of the self-assembled growth of GaN nanocolumns on Si(111). Morphology differences and optical properties are compared to those of GaN layer grown directly on Si(111). The effects of the growth temperature on the In incorporation in self-assembled InGaN nanocolumns grown on Si(111) is described. The second section reviews the basic growth mechanisms of selectively grown GaNbased nanostructures on c-plane GaN/sapphire templates. By increasing the local III/V ratio morphological changes from pyramidal islands, to GaN nanocolumns with top semi-polar planes, and further to GaN nanocolumns with top polar c-planes are observed. When growing InGaN nano-disks embedded into the GaN nanocolumns, the different morphologies mentioned lead to different optical properties, due to the semipolar and polar nature of the crystal planes involved. The third section reports on the effect of the growth temperature and In/Ga ratio on the morphology and light emission characteristics of ordered InGaN nanocolumns grown on c-plane GaN/sapphire templates. Within the growth temperature range of 650 to 750oC the In incorporation can be modified either by the growth temperature, or the In/Ga ratio. Control of these factors allows the optimization of the InGaN nanocolumns light emission wavelength. In order to achieve white light emission two approaches are used. First yellow-white light emission can be obtained at room temperature from nanostructures where the InGaN region is composition-graded by using temperature gradients during growth. In a second approach the stacking of red, green and blue emitting segments was used to achieve the monolithic integration of these structures in one single InGaN nanocolumn leading to ordered broad spectrum emitters. With this approach, the spectral shape can be controlled by changing the thickness of the respective InGaN segments. Furthermore the growth of ordered arrays of InGaN/GaN nanocolumnar light emitting diodes by molecular beam epitaxy, emitting in the blue (441 nm), green (502 nm), and yellow (568 nm) spectral range is reported. The device active region, consisting of a nanocolumnar InGaN section of nominally constant composition and 250 to 500 nm length, is free of extended defects, which is in strong contrast to InGaN layers (planar) of similar composition and thickness. Electroluminescence spectra show a very small blue shift with increasing current, (almost negligible in the yellow device) and line widths slightly broader than those of state-of-the-art InGaN quantum wells. Next the selective area growth of In(Ga)N/GaN nanocolumns on Si(111) substrates is discussed. Ordered In(Ga)N/GaN nanocolumns emitting from ultraviolet (3.2 eV) to infrared (0.78 eV) were then grown on top of GaN-buffered Si substrates. The morphology and the emission efficiency of the In(Ga)N/GaN nanocolumns emitting in the green could be substantially improved by tuning the In/Ga and total III/N ratios, where an estimated internal quantum efficiency of 30 % was derived from photoluminescence data. In the next section, this work presents a study on the selective area growth mechanisms of green-emitting InGaN/GaN nanocolumns and their optical properties. InGaN/GaN nanocolumns with long InGaN sections (330-830nm) were grown on GaN/sapphire and GaN-buffered Si(111). The nanocolumn’s morphology and spatial indium distribution is found to depend on the local group (III)/N and In/Ga ratios at the nanocolumn’s top. A negligible spread of the average indium incorporation among different nanostructures is found as indicated by similar shapes of the cathodoluminescence spectra taken from single nanocolumns and ensembles of nanocolumns. For InGaN/GaN nanocolumns grown on GaN-buffered Si(111), all emitting in the green spectral range, the internal quantum efficiency increases up to 30% when decreasing growth temperature and increasing active nitrogen. This behavior is likely due to the formation of highly localized states, as indicated by the absence of a complete s-shape behavior of the PL peak position with temperature (up to room temperature) in samples with high internal quantum efficiency. On the other hand, no dependence of the internal quantum efficiency on the growth conditions is found for InGaN/GaN nanostructures grown on GaN/sapphire, where the maximum achieved efficiency is 3.7%. As alternative to axial InGaN/GaN nanostructures, section 4 reports on the growth and characterization of InGaN/GaN core-shell structures on an ordered array of top-down patterned GaN microrods etched from a GaN/sapphire template. Growth of InGaN/GaN is conformal, with axial and radial growth components leading to core-shell structures with clear hexagonal facets. The radial InGaN growth (shell) is confirmed by spatially resolved cathodoluminescence performed in a scanning electron microscopy as well as in scanning transmission electron microscopy. Furthermore the growth of InGaN core-shell micro pillars using an ordered array of GaN cores grown by metal organic vapor phase epitaxy as a template is demonstrated. Upon InGaN overgrowth core-shell structures with emission at around 3.0 eV are formed. With spatially resolved cathodoluminescence, an increasing In content towards the pillar top is found to be present in the InGaN shell, as indicated by a shift of CL peak position from 3.2 eV at the shell bottom to 3.0 eV at the shell top. This shift is related to variations of the local III/V ratio at the side facets. Further, the successful fabrication of a core-shell pin diode structure is demonstrated. Spatially resolved electroluminescence measurements performed on individual micro LEDs, confirm emission from the InGaN shell (lateral diode) at around 3.0 eV, as well as from the pillar top facet (axial diode) at around 2.3 eV. Finally, this work reports on the selective area growth of GaN, with and without InGaN insertion, on semi-polar (11-22) and non-polar (11-20) templates. Upon SAG the high defect density present in the GaN templates is strongly reduced as indicated by TEM and a dramatic improvement of the optical properties. In case of SAG on non-polar (11-22) templates the formation of nanostructures with a low aspect ratio took place allowing for the fabrication of high-quality, non-polar GaN pseudo-templates by coalescence of the nanostructures.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We propose a new kind of quantum dot (QD) materials for the implementation of the intermediate band solar cell (IBSC) [1]. The materials are formed by lead salt QDs of the family IV-VI (PbTe, PbSe or PbS) embedded in a semiconductor of the family II-VI (Cd1-xMgxTe, CdxZn1-xTe, and CdS1-xSex or ZnSe1-xTex, respectively). These QDs are not nucleated due to lattice mismatch, as it is the case of the InAs/GaAs QD material system grown by the Stranski-Krastanov (S-K) mode. In these materials, the QDs precipitate due to the difference in lattice type: the QD lead salt material crystallizes in the rocksalt structure, while the II-VI host material has the zincblende structure [2]. Therefore, it is possible to use lattice-matched QD/host combinations, avoiding all the strain-related problems found in previous QD-IBSC developments. In this paper we discuss the properties of the lead salt QD materials and propose that they are appropriate to overcome the fundamental drawbacks of present III-V-based QD-IBSC prototypes. We also calculate the band diagram for some examples of IV-VI/II-VI QD materials. The detailed balance efficiency limit of QD-IBSCs based on the studied materials is found to be over 60% under maximum concentration.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The influence of the substrate temperature, III/V flux ratio, and mask geometry on the selective area growth of GaN nanocolumns is investigated. For a given set of growth conditions, the mask design (diameter and pitch of the nanoholes) is found to be crucial to achieve selective growth within the nanoholes. The local III/V flux ratio within these nanoholes is a key factor that can be tuned, either by modifying the growth conditions or the mask geometry. On the other hand, some specific growth conditions may lead to selective growth but not be suitable for subsequent vertical growth. With optimized conditions, ordered GaN nanocolumns can be grown with a wide variety of diameters. In this work, ordered GaN nanocolumns with diameter as small as 50 nm are shown.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Concentrator photovoltaic is an emergent technology that may be a good economical and efficient alternative for the generation of electricity at a competitive cost. However, the reliability of these new solar cells and systems is still an open issue due to the high-irradiation level they are subjected to as well as the electrical and thermal stresses that they are expected to endure. To evaluate the reliability in a short period of time, accelerated aging tests are essential. Thermal aging tests for concentrator photovoltaic solar cells and systems under illumination are not available because no technical solution to the problem of reaching the working concentration inside a climatic chamber has been available. This work presents an automatic instrumentation system that overcomes the aforementioned limitation. Working conditions have been simulated by forward biasing the solar cells to the current they would handle at the working concentration (in this case, 700 and 1050 times the irradiance at one standard sun). The instrumentation system has been deployed for more than 10 000 h in a thermal aging test for III-V concentrator solar cells, in which the generated power evolution at different temperatures has been monitored. As a result of this test, the acceleration factor has been calculated, thus allowing for the degradation evolution at any temperature in addition to normal working conditions to be obtained.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Este Trabajo Fin de Máster surge de la necesidad de evaluar la fiabilidad de los sistemas fotovoltaicos de concentración, los cuales han sufrido una evolución importante, pasando de usarse células solares de silicio con un 26% de rendimiento, a células multiunión III-V superando el 43% de rendimiento. Las células solares multinunión, mucho más caras y complejas que las células de silicio, no podrán ser comercializadas hasta que no se demuestre que tienen una fiabilidad comparable a las células de silicio. Con el objetivo de disponer de resultados de fiabilidad en un periodo de tiempo adecuado, se utilizan ensayos acelerados. Los ensayos acelerados en células solares presentan una dificultad añadida, debido a la necesidad de que la célula solar esté funcionando y además sea caracterizada dentro de una cámara climática. Mientras que para realizar ensayos acelerados en otros dispositivos es muy sencillo hacerlos funcionar dentro de la cámara climática, en el caso de las células solares tanto el funcionamiento como la caracterización requieren de iluminación dentro de la cámara climática. Conseguir dicha iluminación es complejo como se comentará en el desarrollo de esta memoria de Trabajo Fin de Máster, así como la solución encontrada. A lo largo de esta memoria se desarrollará una primera parte teórica, comenzando con una breve descripción teórica sobre células solares, aunque el estudio de las mismas no es el objetivo de este proyecto, por lo que se continuará con teoría de fiabilidad. El objetivo de este Trabajo Fin de Máster es desarrollar un software capaz de realizar ensayos acelerados sobre células solares. El diseño del software desarrollado podría usarse para cualquier tipo de célula solar, u otro dispositivo similar como un LED o un diodo láser. El último capítulo teórico desarrollado en este proyecto es una introducción al lenguaje de programación gráfico, denominado lenguaje G, implementado con Labview, software elegido para el desarrollo del programa. Dado que estará destinado a su uso en otros proyectos, el desarrollo del sistema estará totalmente descrito y el código comentado, para que en un futuro se pueda modificar de forma sencilla. El núcleo de la memoria es el desarrollo del software aunque también se mostrará el desarrollo hardware, que ha sido desarrollado en paralelo en otro Trabajo Fin de Máster y la instalación necesaria para poder llevar a cabo los ensayos. Para finalizar la memoria, se documenta la instalación realizada, mostrando las pruebas realizadas al software y al hardware y la puesta en funcionamiento de los ensayos con sus primeros resultados.