34 resultados para Horizontal loading


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper addresses two aspects of the behavior of interior reinforced concrete waffle flat plate?column connections under lateral loads: the share of the unbalanced moment between flexure and excentric shear, and the effect of the transverse beams. A non-linear finite element model (benchmark model) was developed and calibrated with the results of quasi-static cyclic tests conducted on a 3/5 scale specimen. First, from this numerical model, the portion cv of the unbalanced moment transferred by the excentricity of shear about the centroid of the critical sections defined by Eurocode 2 (EC-2) and by ACI 318-11 was calculated and compared with the share-out prescribed by these codes. It is found that while the critical section of EC-2 is consistent with the cv provided by this code, in the case of ACI 318-11, the value assigned to cv is far below (about 50% smaller) the actual one obtained with the numerical simulations. Second, from the benchmark model, seven additional models were developed by varying the depth D of the transverse beam over the thickness h of the plate. It was found that the ductility of the connection and the effective width of the plate can respectively be increased up to 50% and 10% by raising D/h to 2 and 1.5.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to evaluate ground shaking characteristics due to surface soil layers in the urban area of Port-au-Prince, short-period ambient noise observation has been performed approximately in a 500x500m grid. The HVSR method was applied to this set of 36 ambient noise measurement points to determine a distribution map of soil predominant periods. This map reveals a general increasing trend in the period values, from the Miocene conglomerates in the northern and southern parts of the town to the central and western zones formed of Pleistocene and Holocene alluvial deposits respectively, where the shallow geological materials that cover the basement increase in thickness. Shorter predominant periods (less than 0.3 s) were found in mountainous and neighbouring zones, where the thickness of sediments is smaller whereas longer periods (greater than 0.5 s) appear in Holocene alluvial fans, where the thickness of sediments is larger. The shallow shear-wave velocity structure have been estimated by means of inversion of Rayleigh wave dispersion data obtained from vertical-component array records of ambient noise. The measurements were carried out at one open space located in Holocene alluvial deposits, using 3 regular pentagonal arrays with 5, 10 and 20m respectively. Reliable dispersion curves were retrieved for frequencies between 4.0 and 14 Hz, with phase velocity values ranging from 420m/s down to 270 m/s. Finally, the average shear-wave velocity of the upper 30 m (VS30) was inverted for characterization of this geological unit.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thermal and mechanical behaviour of isotactic polypropylene (iPP) nanocomposites reinforced with different loadings of inorganic fullerene-like tungsten disulfide (IF-WS2) nanoparticles was investigated. The IF-WS2 noticeably enhanced the polymer stiffness and strength, ascribed to their uniform dispersion, the formation of a large nanoparticle?matrix interface combined with a nucleating effect on iPP crystallization. Their reinforcement effect was more pronounced at high temperatures. However, a drop in ductility and toughness was found at higher IF-WS2 concentrations. The tensile behaviour of the nanocomposites was extremely sensitive to the strain rate and temperature, and their yield strength was properly described by the Eyring s equation. The activation energy increased while the activation volume decreased with increasing nanoparticle loading, indicating a reduction in polymer chain motion. The nanoparticles improved the thermomechanical properties of iPP: raised the glass transition and heat deflection temperatures while decreased the coefficient of thermal expansion. The nanocomposites also displayed superior flame retardancy with longer ignition time and reduced peak heat release rate. Further, a gradual rise in thermal conductivity was found with increasing IF-WS2 loading both in the glassy and rubbery states. The results presented herein highlight the benefits and high potential of using IF-nanoparticles for enhancing the thermomechanical properties of thermoplastic polymers compared to other nanoscale fillers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The type-I intermittency route to (or out of) chaos is investigated within the horizontal visibility (HV) graph theory. For that purpose, we address the trajectories generated by unimodal maps close to an inverse tangent bifurcation and construct their associatedHVgraphs.We showhowthe alternation of laminar episodes and chaotic bursts imprints a fingerprint in the resulting graph structure. Accordingly, we derive a phenomenological theory that predicts quantitative values for several network parameters. In particular, we predict that the characteristic power-law scaling of the mean length of laminar trend sizes is fully inherited by the variance of the graph degree distribution, in good agreement with the numerics. We also report numerical evidence on how the characteristic power-law scaling of the Lyapunov exponent as a function of the distance to the tangent bifurcation is inherited in the graph by an analogous scaling of block entropy functionals defined on the graph. Furthermore, we are able to recast the full set of HV graphs generated by intermittent dynamics into a renormalization-group framework, where the fixed points of its graph-theoretical renormalization-group flow account for the different types of dynamics.We also establish that the nontrivial fixed point of this flow coincides with the tangency condition and that the corresponding invariant graph exhibits extremal entropic properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Numerical analysis is a suitable tool in the design of complex reinforced concrete structures under extreme impulsive loadings such as impacts or explosions at close range. Such events may be the result of terrorist attacks. Reinforced concrete is commonly used for buildings and infrastructures. For this reason, the ability to accurately run numerical simulations of concrete elements subjected to blast loading is needed. In this context, reliable constitutive models for concrete are of capital importance. In this research numerical simulations using two different constitutive models for concrete (Continuous Surface Cap Model and Brittle Damage Model) have been carried out using LS-DYNA. Two experimental benchmark tests have been taken as reference. The results of the numerical simulations with the aforementioned constitutive models show different abilities to accurately represent the structural response of the reinforced concrete elements studied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article presents a new material model developed with the aim of analyzing failure of blunt notched components made of nonlinear brittle materials. The model, which combines the cohesive crack model with Hencky's theory of total deformations, is used to simulate an experimental benchmark carried out previously by the authors. Such combination is achieved through the embedded crack approach concept. In spite of the unavailability of precise material data, the numerical predictions obtained show good agreement with the experimental results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article is intended to state that Technical Drawing is a multiple tool of expression and communication essential to develop inquiry processes, the scientifically basis and comprehension of drawings and technological designs that can be manufactured. We demonstrate graphically and analytically that spatial vision and graphic thinking allow us to identify graphically real life problems, develop proposals of solutions to be analysed from different points of view, plan and develop the project, provide information needed to make decisions on objects and technological processes. From the knowledge of Technical Drawing and CAD tools we have developed graphic analyses to improve and optimize our proposed modification of the geometry of the rectangular cells of conventional bricks by hexagonal cells, which is protected by a Spanish patent owned by the Polytechnic University of Madrid. This new internal geometry of the bricks will improve the efficiency and the acoustic damping of walls built with the ceramic bricks of horizontal hollow, maintaining the same size of the conventional bricks, without increasing costs either in the manufacture and the sale. A single brick will achieve the width equivalent to more than FOUR conventional bricks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

En las redes convergentes inalámbricas, el traspaso horizontal entre distintos puntos de acceso de la red WLAN es una gran fuente de degradación de la calidad de la VoIP y otros servicios conversacionales en tiempo real. Esto es debido a que este tipo de redes no fueron concebidas originalmente para soportar este tipo de servicios, y los traspasos siguen un protocolo ¿cortar antes de realizar¿, produciéndose interrupciones en la comunicación motivadas por el tiempo que necesitan los terminales en volver a asociarse a la red. En este artículo se estudia el efecto que tienen el tamaño de la ventana de promediado de la señal, la histéresis variable y el retardo del handover por parecido entre potencia de puntos de acceso de destino sobre el número de traspasos y las caídas de la potencia de señal por debajo del valor de sensibilidad del terminal, causantes principales de las interrupciones en la comunicación, y, con ello, de la degradación de la calidad de las comunicaciones.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plano Horizontal Plano. Del plano horizontal como límite entre lo estereotómico y lo tectónico

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Flat Horizontal Plane, the platform, is more than just one of the most basic mechanisms of Architecture. In this essay, I would like to move towards understanding this Flat Horizontal Plane not only as the primary mechanism of Architecture, but also, when it is erected, as the spatial limit between the stereotomic and the tectonic.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The latest technology and architectural trends have significantly improved the use of a large variety of glass products in construction which, in function of their own characteristocs, allow to design and calculate structural glass elements under safety conditions. This paper presents the evaluation and analysis of the damping properties of rectangular laminated glass plates of 1.938 m x 0.876 m with different thickness depending on the number of PVB interlayers arranged. By means of numerical simulation and experimental verification, using modal analysis, natural frequencies and damping of the glass plates were calculated, both under free boundary conditions and operational conditions for the impact test equipment used in the experimental program, as the European standard UNE-EN 12600:2003 specifies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

While static fracture toughness is a widely studied and standardised parameter, its dynamic counterpart has not been exhaustively examined. Therefore, in this research a series of quasi-static and different loading-rate dynamic tests were carried out to determine the evolution of fracture toughness with the velocity of the application of the load on aluminium 7017-T73 alloy. Three-point bending tests of pre-fatigued standard specimens (ASTM E399) at four loading-rates were carried out. The experiments were conducted by employing the subsequent apparatus ordered from lowest to highest load application velocity: a servo-hydraulic universal testing machine, a free-drop tower, a modified Split Hopkinson Pressure Bar and an explosive load testing device. In order to perform the dynamic fracture toughness tests, it was necessary to design and develop some experimental devices. The fracture-initiation toughness of the aluminium 7017-T73 alloy did not exhibit a significant variation for the studied cases. As a conclusion, the research showed that fracture-initiation toughness remained constant regardless of the velocity at which the load was applied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the growing body of research on traumatic brain injury and spinal cord injury, computational neuroscience has recently focused its modeling efforts on neuronal functional deficits following mechanical loading. However, in most of these efforts, cell damage is generally only characterized by purely mechanistic criteria, function of quantities such as stress, strain or their corresponding rates. The modeling of functional deficits in neurites as a consequence of macroscopic mechanical insults has been rarely explored. In particular, a quantitative mechanically based model of electrophysiological impairment in neuronal cells has only very recently been proposed (Jerusalem et al., 2013). In this paper, we present the implementation details of Neurite: the finite difference parallel program used in this reference. Following the application of a macroscopic strain at a given strain rate produced by a mechanical insult, Neurite is able to simulate the resulting neuronal electrical signal propagation, and thus the corresponding functional deficits. The simulation of the coupled mechanical and electrophysiological behaviors requires computational expensive calculations that increase in complexity as the network of the simulated cells grows. The solvers implemented in Neurite-explicit and implicit-were therefore parallelized using graphics processing units in order to reduce the burden of the simulation costs of large scale scenarios. Cable Theory and Hodgkin-Huxley models were implemented to account for the electrophysiological passive and active regions of a neurite, respectively, whereas a coupled mechanical model accounting for the neurite mechanical behavior within its surrounding medium was adopted as a link between lectrophysiology and mechanics (Jerusalem et al., 2013). This paper provides the details of the parallel implementation of Neurite, along with three different application examples: a long myelinated axon, a segmented dendritic tree, and a damaged axon. The capabilities of the program to deal with large scale scenarios, segmented neuronal structures, and functional deficits under mechanical loading are specifically highlighted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article investigates experimentally the application of health monitoring techniques to assess the damage on a particular kind of hysteretic (metallic) damper called web plastifying dampers, which are subjected to cyclic loading. In general terms, hysteretic dampers are increasingly used as passive control systems in advanced earthquake-resistant structures. Nonparametric statistical processing of the signals obtained from simple vibration tests of the web plastifying damper is used here to propose an area index damage. This area index damage is compared with an alternative energy-based index of damage proposed in past research that is based on the decomposition of the load?displacement curve experienced by the damper. Index of damage has been proven to accurately predict the level of damage and the proximity to failure of web plastifying damper, but obtaining the load?displacement curve for its direct calculation requires the use of costly instrumentation. For this reason, the aim of this study is to estimate index of damage indirectly from simple vibration tests, calling for much simpler and cheaper instrumentation, through an auxiliary index called area index damage. Web plastifying damper is a particular type of hysteretic damper that uses the out-of-plane plastic deformation of the web of I-section steel segments as a source of energy dissipation. Four I-section steel segments with similar geometry were subjected to the same pattern of cyclic loading, and the damage was evaluated with the index of damage and area index damage indexes at several stages of the loading process. A good correlation was found between area index damage and index of damage. Based on this correlation, simple formulae are proposed to estimate index of damage from the area index damage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Brick facades are a construction type, strongly linked to local construction characteristics and methods. In Spain, particularly in Castilla, the facades have been built since the '80s with Castilian half foot (11.5 cm), resting on the edge of slabs. The design of these facades, to horizontal loads from wind, depending on the codes used, can lead to completely different valid solutions. Applying same loads, the facades studied with current European standard (Eurocode 6), have a maximum length of 7.1 m between supports, while the Spanish code, Technical Building Code - Structural Safety Masonry, (CTE SE-F), 8.4 m can be achieved. This represents an increase of flexural strength, depending on the calculation model used, which can reach until 8 times. This is due to the difference of the calculation method and the structural model in one and another standard, depending on if this facade is analyzed as a vertical or horizontal beam or by formation of a vertical or horizontal archh. This paper analyzes the constructive solution of the brick facades that results from applying Spanish or European standards and how it affects the model applied in the safety of the resulting facade.